
Joint Swapping and Purification with Failures for
Entanglement Distribution in Quantum Networks

Abstract—Swapping and purification are the two fundamental
building blocks for multi-hop quantum networks. However, their
interplay and its impact on end-to-end fidelity and cost are not
yet fully explored. Existing scheduling algorithms address this
problem under certain simplified assumptions and models that
may not fully capture the complexities of real scenarios. In this
work, we first consider more general assumptions that account
for operation failures and extend a tree-based modeling approach
for joint swapping and purification. Then, for the first time, we
analytically prove the previous conjecture that the optimal strat-
egy under Binary system is always to purify the entanglements
before any swapping. This sheds light on the protocol and device
design for entanglement distribution in quantum networks. We
then further propose a tree-based algorithm, which can efficiently
schedule swapping and purification along a path for both Binary
and Werner systems. Extensive simulations have been conducted
to evaluate the proposed method against the existing solutions,
and the results show that our method uses fewer entanglements
to establish qualified end-to-end entanglements and thus achieves
higher network throughput.

Index Terms—Quantum Swapping, Quantum Purification, Fi-
delity, Entanglement Distribution, Quantum Network.

I. INTRODUCTION

In a quantum network [1]–[4], a pair of entangled particles
(EPR pairs) needs to be distributed to the source and destina-
tion nodes (denoted as a Source-Destination (SD) pair) so that
quantum bits/status can be transferred between them via tele-
portation. Such entanglements are the key resource in quantum
networks [5]–[8]. However, establishing long-distance (multi-
hop) entanglements is a challenging task. Unlike in classic
networks, we cannot simply copy the state of one particle due
to the no-cloning principle of quantum states. Simply sending
photons (the usual particle used to carry quantum information)
in optical fibers far away is also infeasible because photons
decay exponentially as they travel in fibers.

Entanglements in quantum networks are initially generated
over short quantum links (usually optical fibers). One link may
contain multiple channels to generate entanglements on the
two endpoints of the link. Such link-level entanglements can
be later connected by the swapping operation to form long-
distance connections. Quantum swapping takes two adjacent
entanglements as inputs and generates a longer entanglement.
This operation can be repeated over a path until we obtain
an end-to-end (E2E) entanglement on the desired SD pair.
However, while swapping establishes a longer entanglement,
it also decreases the quality of the entanglement (measured by
fidelity). Then, quantum purification is introduced in quantum
networks: by sacrificing additional entanglements on the same
two nodes, we can improve the fidelity of the entanglement.
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Fig. 1. Swapping and purification schemes (SPS): two example schemes along
a path of four quantum links.

In short, swapping extends the distance of entanglements at
the price of their fidelity; while purification improves fidelity
by consuming additional entanglement(s). Combining these
two basic operations, we can build long-distance (multi-hop)
entanglements with high fidelity.

As shown in Fig. 1, we now consider an example of a
quantum path from node n1 to n5 connected by four optical
links, which generate entangled particle pairs as entangle-
ments. Fig. 1 shows two possible sequences of swapping
and purification operations (schemes) to establish the E2E
entanglement between n1 and n5. In Scheme 1, at t1, links
e1 and e2 generate one entangled pair, separately. Because
each pair has one particle on router n2, swapping can be
performed by n2 to obtain an entanglement between n1 and n3
(at t2). At the same time, link e3 generates two entanglements,
which share the same end nodes (n3 and n4), at t1. Thus, a
purification can be performed collaboratively by n3 and n4. If
it succeeds, an entanglement of higher fidelity is established
on link e3. Via more swappings, Scheme 1 establishes an E2E
entanglement between n1 and n5 at t4. Scheme 2 gives an
E2E entanglement on the same ends via a different swapping
and purification order. Note that classic communications parts
of those operations are ignored in this paper, and ti’s are not
real-time stamps but only for marking the order of operations.

How swapping and purification interfere with each other,
i.e., scheduling the swapping and purification operations to
reach a specific final E2E fidelity with the least number of en-
tanglements consumed, is still one open challenge in quantum
networks. As shown in the example of Fig. 1, to acquire one
entanglement for an SD pair connected by a quantum path,
different Swapping and Purification Schemes (SPS) [9], [10]
can be applied. Two extreme types of SPS solutions are (i)
PS scheme: purify the entanglements immediately after their
generation on each link, then swap links to establish the E2E
entanglement; (ii) SP scheme: firstly generate massive low-



quality E2E entanglements by swapping and then perform
purification over them. Obviously, you can also have a hybrid
scheme that purifies intermediate entanglements after some
swappings but before they are end-to-end. In Fig. 1, Scheme 1
follows the PS scheme, while Scheme 2 is a hybrid scheme.

A few studies have explored joint scheduling of swapping
and purification but within a relatively limited scope. Some
works [10]–[13] directly adopt one of the schemes without
detailed justification, while others [14] provide only limited
empirical study. Until recently, some analyses [15]–[17] have
theoretically studied joint swapping and purification schemes
but based on impractical assumptions, such as the absence of
operation failures. To the best of our knowledge, no existing
work has comprehensively analyzed the optimal SPS solutions
(e.g., PS/SP/hybrid) while accounting for operation failures.
This remains an important open problem as the optimal SPS is
critical for device and protocol design for quantum networks.
For example, if PS is indeed the best one, we may consider
embedding purification into the link level (to allow fast purifi-
cation over optical fibers) and design the repeaters accordingly.
If not, we may need to consider collaboration between non-
adjacent routers, which can be much more complicated.

In this paper, we fully explore the joint SPS problem.
We first generalize the assumptions (by considering arbitrary
operation orders and possible swapping/purification failures)
and formulate an Optimal Swapping and Purification Scheme
(OSPS) problem. By absorbing purification into the current
tree-based modeling, we introduce the concept of Swapping
and Purification Tree (SPT) to represent and analyze any pos-
sible solution of OSPS. We also propose a dynamic program-
ming based SPS method, which enhances our understanding of
the structure of SPS problem. These provide the foundation of
our further analysis and solutions. By using the SPT model, we
formally prove that the optimal solution of OSPS under Binary
system follows the PS scheme. Furthermore, we propose a
new tree-based solution, which works under both Binary and
Werner systems. Via extensive simulations, we confirm our
proposed method outperforms state-of-the-art solutions with
both noisy and noiseless gates (with noisy channels). Overall,
our contributions in this paper are three-fold.

1) We present a new modeling method for joint SPS in
Section III, by considering the impact of operational
failures. We then formally introduce the optimal SPS
problem which aims to minimize the expected cost while
achieving required E2E fidelity.

2) We prove that the optimal SPS solution under Binary
systems follows the PS scheme (i.e., performing purifi-
cation before swapping) in Section IV. To the best of
our knowledge, this is the first formal theoretical analysis
with operation failures on the SPS problem.

3) We propose a new branching tree method for SPS prob-
lem in Section V, which is able to handle joint (hybrid)
optimization of swapping and purification. Our simulation
results in Section VI then confirm that it outperforms the
state-of-the-art solutions under both Binary and Werner
systems.

II. RELATED WORKS
Entanglement Distribution and Routing. Early works

on entanglement distribution focus on maximizing network
throughput or minimizing delay without considering fidelity
and purification. For example, ORED [12] models throughput
maximization as a linear programming problem, while [18]
proposes an opportunistic routing to reduce the delay. [19]
has more specific assumptions on entanglement generation on
optical links and uses predetermined paths between SD pairs
for routing. FENDI [20] adopts the ORED framework and
considers fidelity but not purification, improving fidelity and
delay by reducing path length. Yang et al. [21] propose an
online routing algorithm to enhance efficiency and scalability.
These fidelity-agnostic algorithms often result in low-fidelity
E2E entanglements, especially as the hop number increases.

Connection Quality Enhancement. Improving E2E entan-
glement fidelity can be attempted through purification over
multiple E2E entanglements (as an SP scheme), though it is
less effective for low-fidelity E2E entanglements. To overcome
this, Zhao et al. [10] and Li et al. [11] both design greedy
algorithms to keep finding the critical link (with either the
largest gradient or the most fidelity increase after purification)
and purifying it until the E2E fidelity threshold is met. Such
methods use the PS scheme, but their calculation of expected
sacrificial entanglements is greatly simplified (and the results
are limited, e.g., both their solutions do not work under the
Werner system). Jia and Chen also study joint swapping and
purification in their recent series [15]–[17]. Their latest work
[17] is able to find near-optimal paths between SD pairs
and performs path selection to maximize overall throughput.
However, their optimality is defined on additive pseudo metrics
(not the real fidelity and throughput) and they assume no
operation failures. Victoria et. al [22] propose a hybrid method
that purifies after a certain fixed number of swappings. Jiang
et. al [23] optimizes the total operation time via a dynamic
programming based approach. All the works above ignore
swap/purification failures. Instead, our tree-based solution is
able to handle both failures of swapping/purification and
complicated hybrid schemes.

Modeling and Analysis. Modeling E2E entanglement with
hybrid swapping and purification is complex. Some works, like
[12], [24], use tree structures for modeling swappings along
quantum paths but do not include purification. Incorporating
purification into the tree is easy as it also has two inputs and
one output, but it is hard to perfectly absorb its properties.
For example, the probability of purification failure is related
to the fidelity of input pairs. When the tree is larger, how to
compute the fidelity and expected entanglements used by this
tree becomes challenging. Chang et al. [25] noticed that the
associativity of operators helps to analyze the throughput on a
single path, but does not consider fidelity. In this work, we use
associativity to explain some properties of SPS. Jia and Chen
[15]–[17] present the first closed-form fidelity of multiple
purifications and optimal SPS for Werner systems. However,
their analysis assumes no operation failure and narrowed
hardware parameters, which limits its application. Instead,



our analysis focuses on Binary system, considers operation
failures, and allows more flexible hardware parameters.

III. QUANTUM BACKGROUND AND SPS MODELING

A. Quantum States and Noise

A quantum bit can be in a superposition of multiple
states, e.g., two states in a 2-state system. Such states can
be expressed by |ψ⟩ = α |0⟩ + β |1⟩, where α and β are
complex numbers. This formula describes a state |ψ⟩ that,
upon measurement, turned to be |0⟩ with probability |α|2,
and to be |1⟩ with probability |β|2, where |α|2 + |β|2 = 1.
Similarly, when two qubits are entangled (called ebits), we
are interested in the mixture of the four states,

|ψ⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ . (1)

The squared coefficients still indicate the probability of the
results and they sum to 1, e.g., we may get |00⟩ with
probability |α00|2. Especially, the four special Bell states
(also, interchangeably in this paper, EPR pairs) are: |Φ±⟩ =
1√
2
(|00⟩±|11⟩) and |Ψ±⟩ = 1√

2
(|01⟩±|10⟩). We can express

a pair of ebits not only by (1), but also by the Bell states:

ρ =F1

∣∣Φ+
〉 〈

Φ+
∣∣+ F2

∣∣Ψ−〉 〈Ψ−∣∣
+F3

∣∣Ψ+
〉 〈

Ψ+
∣∣+ F4

∣∣Φ−〉 〈Φ−∣∣ , (2)

where
∑

i Fi = 1. Note that ρ is not a vector like |ψ⟩ in (1)
but a matrix, and Fi’s are the diagonal elements. Typically, we
hope ρ to be a pure state of one of the four Bell states, e.g.,
without loss of generality, |Φ+⟩. Then, the fidelity of an EPR
pair is F = F1, which means the probability that the EPR pair
is in the desired state. In perfect systems, we have F = 1. In
reality, however, the entanglements are always noisy, so we
only have F < 1, and the other non-zero diagonals indicate
the probability of being in the undesired states.

Quantum States. In this paper, we consider two formats of
Eq. (2). For the Binary state [13], we define fidelity F = F1

and allow only one of F2, F3, F4 to be non-zero (i.e, (1−F )).
E.g., in [13], F3 = 1 − F . We are interested in such a state
because it allows faster purification [13]. The other format is
the Werner state, usually associated with the worst case noise:
the entanglement is i) totally destroyed with probability p, or
ii) left untouched with probability 1− p. Such noisy channels
are also known as depolarizing channels. The result density
matrix is ρ = (1−p)|Φ+⟩⟨Φ+|+p · 14I , where I is the identity
matrix and 1

4I represents the totally destroyed entanglement.
Noise Models. We consider noise introduced in two stages:

entanglement generation and quantum operations (i.e., swap-
ping and purification). We consider two settings of state
representations and noise: (1) Binary states with noisy en-
tanglement generation and noiseless quantum operations; ii)
Werner states with noisy entanglement generation and noisy
quantum operations. We are interested in those two settings
because the first setting allows faster purification protocols,
while the second one represents the general (worst case) noise
model. More details about those two settings and protocols
will be discussed in the next part of this section. In the rest
of this paper, we refer to those two settings by Binary and

Werner systems. In other papers, the Binary/Werner states are
sometimes called dephased/depolarized states, respectively.

B. Swapping and Purification

Now, we look at the two fundamental building blocks:
swapping and purification, and briefly describe how they are
conducted. For more details, please refer to [10].

Swapping. Swapping, or more generally, teleportation, in-
volves sending a quantum state to a remote node with the help
of an EPR pair. When the qubit to be teleported is already
entangled with another qubit, we call it a swapping: two
entanglements are connected into a longer one. The density
matrix of the output entanglement can be expressed by the
diagonals of the two input states. A detailed calculation is
given by formula (10.9) in [26]. In this paper, we are only
interested in the output fidelity (the first diagonal element),
F out
1 =

∑
i F

1
i F

2
i , where F 1

i /F
2
i are the diagonals of the

first/second input pair. It is easy to see that the output fidelity
is the probability that the two input pairs are in the same states,
no matter in the desired one (F 1

1F
2
1 ) or not (

∑
i=2,3,4 F

1
i F

2
i ).

The formula in [26] gives us the most general case as it
allows all diagonals to be independent. When bringing the
constraints of those terms in Binary/Werner states, we obtain
their swapping functions Sb (in Binary systems) and Sw

(in Werner systems). Suppose the fidelity of the two input
entangled pairs is f1 and f2, separately; then the fidelity of
the output pair can be modeled as follows

Sb(f1, f2) = f1f2 + (1− f1)(1− f2), (3)

Sw(f1, f2) = f1f2 +
1

3
(1− f1)(1− f2). (4)

Note that the success probability of swapping does not rely
on the input fidelity, but its implementation (e.g., 0.5 for linear
optics, 0.625 [27] or 0.75 [28] for improved ones, and 1.0 for
deterministic BSM [29]). We allow it in (0.5, 1) in this paper.

Purification. We consider the two most popular and
well-studied purification protocols: BEJMPS [13], [30] and
BBPSSW [31]. DEJMPS is efficient in terms of improving
the output fidelity when two input pairs are in the Binary
state, while BBPSSW requires the input states in Werner state
(usually associated with the worst-case noise). This is also the
reason why we consider Binary/Werner systems. Note that the
output of BBPSSW may not be in the Werner state, but we
can easily bring it back by depolarization [31] [32].

Purification consists of two CNOT gates and a Bell state
measurement (BSM). The two CNOT operations are conducted
by using one of the input pairs as control qubits, the other
pair as the target qubits. When the BSM result on the target
pair agrees (i.e., the two qubits are in the same state), the
purification succeeds and the other input pair is left with higher
fidelity. Otherwise, it fails and both pairs are discarded without
any outcome. Such inevitable failures are exactly one of the
major reasons why it is not easy to find a good SPS. By the
definition of the two purification protocols, the fidelity of their
output pairs can be modeled as
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Fig. 2. Modeling of different trees: (a) the swapping tree (ST) of Scheme 1 and 2 (ignoring purification); (b) an example purification tree (PT) over link e1;
(c)/(d) the swapping and purification tree (SPT) of Scheme 1/2.

Pb(f1, f2) =
f1f2

f1f2 + (1− f1)(1− f2)
=

f1f2
f1f2 + f̄1f̄2

, (5)

Pw(f1, f2) =
f1f2 +

1
9 f̄1f̄2

f1f2 +
1
3 [f1f̄2 + f̄1f2] +

5
9 f̄1f̄2

, (6)

where f̄i = 1 − fi. The denominators in these formulas are
the probability that the result of BSM agrees, which is exactly
the success probability of purification. The numerators are the
first diagonals obtained from the protocols, respectively. For
example, in Binary systems, the success probability is when
both pairs are in the desired state (f1f2) or both not (f̄1f̄2),
and only (f1f2) contributes to the first diagonal according to
[13], [30]. It is similar to that of Werner systems.

Noisy Gates. The above assumes that the gates are noise-
less. When they are noisy, the output fidelity of swapping
and purification is affected by the accuracy of used gates.
Typically, three types of gates are involved: 1-qubit gates, 2-
qubit gates, and BSM gates. Formulas including the impact of
these three types of gates can be found in [14], [30], [33]. We
will use them in evaluations for noisy Werner systems.
C. OSPS Problem and Tree-based Modeling

We now formally introduce the Optimal Swapping and
Purification Scheme (OSPS) Problem on a quantum path
between an SD pair.

Definition 1: OSPS Problem: Given a simple quantum path
n1 ↔ nN with N − 1 edges/hops {e1, e2, ..., eN−1} where
the edge ei connects nodes ni and ni+1 and generates a
limited number of entanglements in a time period, how to
use swapping and purification operations to create an E2E
entanglement between the SD pair nodes of n1 and nN so that
(1) the fidelity of generated entanglement is larger or equal to
a fidelity threshold F ∗; (2) the expected number of original
link-level entanglements used is minimized.

Swapping and Purification Tree: Given a quantum path,
a Swapping Scheme (SS) defines the order in which quantum
swaps are performed to establish an end-to-end entanglement
along the path. Similar to [24], we can model any SS using
a tree structure, called a Swapping Tree (ST). By ignoring
purification in the SPS shown in Fig. 1, we can model the
swapping scheme along the path n1 ↔ n5 in both SPS
schemes, whose corresponding ST is the same and shown in
Fig. 2(a). Similarly, we can model purification schemes using
a Purification Tree (PT), as shown in Fig. 2(b). It demonstrates

a PT over the link e1. A slight difference is that a PT only
involves entanglements on the same two nodes. When both
swapping and purification are used along the path, we can
model the SPS using a Swapping and Purification Tree (SPT),
as shown in Fig. 2(c) and Fig. 2(d) which depict Scheme 1
and Scheme 2 in Fig. 1, respectively. It is clear that both ST
and PT are special SPTs.

Fig. 3. A 3-level SPT: nodes A, B,
C are either swapping or purification,
while leaves can be quantum links or
sub-SPTs.

Fidelity and Cost of
SPT: For any of these types
of trees, we can compute the
fidelity and expected cost of
any entanglement (i.e., the
expected number of entan-
glements needed) generated
on the corresponding node
in the tree in a bottom-up
manner. It is obvious that the fidelity can be calculated in a
(bottom-up) layer-by-layer fashion using the equations defined
in Section III-B. We now show that the expected cost can also
be calculated by a layer-by-layer method in the tree. Note that
(1) if all operations never fail, then the cost is simply the
number of leaves in the tree (i.e., the number of entanglements
used in total); (2) if we consider the success probabilities
of swapping or purification operations, we now use a simple
example of three-level tree (as shown in Fig. 3) to illustrate
that the expected cost at the root (node A), denoted by E[cA],
can be calculated as follows:

E[cA] =
E[cB ] + E[cC ]

pA
=

E[cD]+E[cE ]
pB

+ E[cF ]+E[cG]
pC

pA
, (7)

where c∗ and p∗ represent the number of entanglements used
by the operation on node ∗ and the success probability of the
operation on node ∗. The expected cost of a parent node is the
ratio between the summation of the cost of its two children
(because they are both consumed in the operation) and the
successful rate of the operation (i.e., swapping or purification).
Due to the space limit, we ignore the formal proof of Eq. (7).
By applying this three-layer tree recursively towards the root
from the bottom, we can process the whole SPT and calculate
the expected cost of this SPT in a layer-by-layer way.

D. Dynamic Programming Solution

Based on the tree modeling, we now introduce a dynamic
programming (DP) solution for the dual problem of our OSPS



problem where the cost C (the number of entanglements
needed) is given and the optimization goal is to maximize
the E2E fidelity. We call such a problem the optimal fidelity
SPS (OFSPS). Note that the DP solution for OFSPS has the
same issue as the early hybrid scheme [13]: the cost needs to
be known as input, which makes them not useful when failure
is considered. To use DP to solve our OSPS problem, we have
to try excessive times (for various costs) to find a proper cost.
Moreover, DP cannot solve the OFSPS with operation failures.

We now consider the optimal structure of OFSPS. Let
T (i, j, c) denote the optimal fidelity through link ei to link
ej (inclusive), when the total expected budget is c EPR pairs.
Then, we have:
T (i, j, c) =max{ max

j−i≤k≤c−j+i
P (T (i, j, k), T (i, j, c− k)),

max
i<m<j

m−i≤k≤c−j+m

S(T (i,m, k), T (m, j, c− k))}.

This considers the current path fraction as ni ↔ nj with
a budget of c. Whenever we get a new entanglement pair
(except link-level ones), it is generated from either quantum
purification (1st term in the eq.) or swapping (2nd term in the
eq.) operations. By exploring all possible path fractions and
budget splits, a simple bottom-up DP algorithm can compute
the final optimal fidelity T (1, N,C) for OFSPS.

Optimality. Under the assumptions of [10], [15]–[17] (no
operation failure, which is actually impossible for purifica-
tion), this DP algorithm is able to find the optimal solution,
as DP algorithms exhaust all possible integer budget splits.
However, if failure of operations is considered, the expected
cost can be real numbers. As there are infinite possible splits
for real numbers, the DP algorithm is not able to try all splits,
and thus cannot solve OFSPS (and OSPS).

IV. ANALYSIS OF OPTIMAL SPS IN BINARY SYSTEMS

To facilitate better solutions for our OSPS problem, we first
analyze the optimal SPS in Binary systems.

SPS Tree Patterns: We first introduce the definitions of two
tree patterns: optimal SPT (OSPT) and restricted SPT (RT).

Definition 2: The optimal SPT (OSPT) is an SPT with the
least resource cost of the root node, while the root fidelity is
no less than a given requirement F ∗.
Obviously, the OSPT describes the optimal solution of OSPS.

Definition 3: A restricted SPT (RT) is an SPT in which
there is no swapping node below a purification node on any
path from the root to a leaf.
In an RT, no purification should happen on any pairs generated
after one or more swappings. All entanglements participating
in any purification either come from (i) entanglement genera-
tion on optical links, or (ii) previous purification.

Main Theorem on Optimal Tree Pattern: We prove that
any OSPT in Binary systems must be an RT.

Theorem 1: In Binary systems, when F ∗ ∈ (0.5, 1), any
OSPT of the OSPS problem must be an RT.

Proof: We prove this by contradiction. Assume that there
exists an OSPT that is not an RT. Then we show that there
exists a transformation that can transform this OSPT into
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Fig. 4. Six possible SPS tree patterns. Here, the pattern is named by ‘the
root’-‘left subtree’-‘right subtree’, where ‘the root’ can be swapping (S) or
purification (P), and ‘subtree’ can be either a pure PT (P) or an RT (R).

an RT while increasing its root fidelity and decreasing its
cost. This is done by recursively transforming subtrees of this
OSPT to RTs in a bottom-up way. Finally, the whole OSPT
is transformed into an RT which has higher fidelity and less
cost than the OSPT, leading to the contradiction.

Now we show how to conduct such transformations. When
the subtrees are limited to RT and PT, there are six distinct
internal node patterns, as shown in Fig. 4. We use three letters
(for ‘the root’-‘left subtree’-‘right subtree’) to name these
patterns. These six patterns are universal because (1) there are
23 = 8 trees in total, but exchanging left and right subtrees
keeps the tree identical, so only 6 out of 8 are left; (2) RT
includes PT, but we assume that any RT in those patterns are
not PT. That is because, in those cases, the pattern degrades
to one of the others. For example, if one of the RTs in SRR
is a PT and the other is not, then the SRR is actually an SRP.

First, for four patterns (SRR, SRP, SPP, and PPP), the
overall tree is already an RT, so we only need to handle the
other two cases (PRP and PRR). Second, in PRP (Fig. 4(e)),
the right child is a pure PT over one link. As the left RT
child can perform the purification operation with this right
PT, they must share the same end nodes (i.e., on the same
two adjacent routers). That is, this RT must be either the leaf
that the PT purifies or another PT over this leaf. Note that a
potential counter-example is when the RT forms a ring with
the leaf: the RT is not a PT but still has the same ends as the
leaf’s. But this is impossible because SPT is defined on a non-
cyclic simple path. Thus, this PRP is actually a PT without any
swapping, thus it is a PPP, an RT too. Last, for PRR (Fig. 4(f)),
we want to prove that it can be transformed into an SRR with
better fidelity and cost. In a Binary system, we can formally
prove this as Lemma 2. Generally, Lemma 2 tells us that we
can lift the two ‘S’ nodes in PRR one level upwards, without
violating its optimality.

Till now, we can transform the above 6 patterns into RT
without decreasing the fidelity or increasing the cost. Now,
we explain how to transform any SPT into an RT. For a non-
RT SPT, we can process it in a bottom-up way: we find the
shallowest ‘S’ node whose parent is ‘P’ (so a PRR). It must
exist otherwise the SPT is an RT. And the children of this ‘S’
must be RT as it is the shallowest ‘S’. We can lift the ‘S’ nodes
to transform the subtree into an RT by applying Lemma 2. By
repeating this transformation, we can concentrate all ‘S’ nodes
towards the root. Finally, we can transform any SPT into an
RT with increased fidelity and decreased cost. This contradicts
the fact that the OSPT is optimal.

Lemma 2: In Binary systems, when all nodes’ fidelity f ∈
(0.5, 1), any PRR can be transformed into SRR with increased



fidelity and reduced cost.
Proof: Due to space limitations, we cannot include the

detailed proof, instead, we explain its basic idea here. We can
quantify the fidelity and cost before and after the transfor-
mation via our layer-by-layer processing. Then, we get a set
of two inequalities: one states that the cost is smaller after
the transformation; the other states that the fidelity is higher
after the transformation. We can find that the necessary and
sufficient condition for both inequalities is that the fidelity
of children in (0.5, 1), which is reasonably true in Binary
systems1.

Discussions: From Theorem 1, we can draw two main
conclusions for Binary systems. First, to search for OSPS, we
no longer need to consider all SPSes (i.e. all SPTs) but only
focus on those of RTs. This greatly reduces the complexity
of its search. Second, for the design of protocols and devices
(e.g., routers), we may directly integrate the purification at
the link level, which separates the swapping and purification.
The protocol may send a requirement for link-level fidelity,
then the routers of a link collaborate locally to generate such
entanglements while the protocol can arrange the swapping.
Such a design may greatly reduce the complexity of network-
wide fidelity-aware protocols (compared with hybrid SPS).

Besides, because RT is an ST of PT (take the root nodes of
PTs as leaves of the ST), we can propose an intuitive solution
framework (for the OSPS problem) consisting of three stages:
(i) PT shape search; (ii) ST shape search; (iii) sacrificial pair
allocation. Existing works [10], [11], [20] do not do shape
search because Sb, Sw, Pb (i.e., Eq. (3), Eq. (4), Eq. (5)) are
all associative. That is, the orders of (i) swapping in Binary
systems, (ii) purification in Binary systems, and (iii) swapping
in Werner systems do not affect the final fidelity of an SPS. But
when the failure of operations occurs, the order now matters in
both systems, as the expected cost is not associative anymore.
Theorem 1 also implies that combining the optimal solution for
each stage can lead to the optimal solution overall. However,
finding the optimal PT and ST shapes is still challenging.
Existing works [10], [11] both somehow follow this 3-stage
framework. However, since Theorem 1 is not true for Werner
systems, such a framework may not even be able to generate
a feasible solution. We will confirm that [10], [11] are indeed
empirically infeasible in the evaluation section.

V. PROPOSED BRANCHING TREE ALGORITHM
Based on our previous analysis, we are able to tell the limits

of the current solution and now propose a new efficient tree-
based SPS algorithm (TREE) that works in both considered
scenarios (i.e., Binary systems and Werner systems).

Overall Framework: We first introduce the main workflow
of our proposed algorithm. The basic idea is, with the help of
the tree structure, we can repeat the following loop until the
E2E fidelity is high enough: (i) find a proper node to purify;
(ii) purify the node; (iii) update the tree. The workflow is

1The fidelity of any node in a SPT in Binary systems should always be
in (0.5, 1). Since if a node has f ≤ 0.5, both swapping and purification
will propagate this low fidelity towards the root to make the root’s fidelity no
greater than 0.5 which is useless in a Binary system.

Algorithm 1 BRANCHING TREE SPS (TREE)
Input: link fidelity array F , fidelity threshold F ∗.
Output: final fidelity f , (root of) SPT t.

1: f, t = BUILD-ST(F )
2: while f < F ∗ do
3: GRAD(t) ▷ forward gradient from root to each node
4: CALC-EFFICIENCY(t)
5: n =FIND-MAX-EFFICIENCY(t) ▷ find the most eff. n
6: n = PURIFY(n) ▷ purify and update n
7: f, t = BACKWARD(n) ▷ update nodes backwards
8: return f , t
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Fig. 5. Control flow of TREE in one single loop: (a) shows gradient
calculation and node finding prior to purification; (b) shows the purification
followed by ancestors updating.

shown in Algorithm 1. First, BUILD-ST constructs an ST of
the router chain without any purification. Then, the loop starts,
and Fig. 5 shows an example of flow within a single loop.

1) GRAD() calculates the gradients of each node w.r.t. the
root. The gradients consist of two parts: (i) gradient of
fidelity Gf , (ii) gradient of cost Gc. They are used to
estimate how many purification impacts the root node, in
terms of fidelity and cost increase.

2) CALC-EFFICIENCY() estimates the efficiency of purify-
ing each node, i.e. (increased fidelity)/(increased cost).

3) We find the node with the highest efficiency and conduct
purification at that node.

4) Finally, as the purified node (with its subtree) is replaced
by a new node, we call BACKWARD() to update this
information to all its ancestors till root.

One of the advantages of this gradient-based design is its
efficiency. By utilizing gradients, we can estimate the impact
of purifying any node locally: we do not need to go backward
(to the root) to know the impact on the root node. Then,
because all functions inside the loop are O(M) (where M is
the number of nodes in the tree), we can do one purification
in O(M) time. Otherwise, without the gradients, we have to
backtrack to root for every node, resulting in O(M2).

Key Steps: we now provide more details of each key step.
BUILD-ST(). It simply creates an ST for the given links

in the quantum path. The shape of ST is a factor in the
performance of this algorithm, but again, we leave the shape
search for ST as future work. Currently, we simply build a
balanced tree, but any other swapping tree method can be used.

GRAD(). Note that all swapping/purification functions, both
for fidelity and cost (probability), are (compositionally) differ-
entiable. We can compute the gradient of any node w.r.t. to the
root, according to the chain rule (for calculating derivatives).



It is similar to the computational graph design (auto-grad) in
machine learning frameworks (like PyTorch, TensorFlow, etc).

Each node should maintain two gradients: the gradient
of fidelity (Gf (∗)) and the gradient of cost (Gc(∗)), where
the ∗ is the corresponding node. Gf (∗) is relatively easy to
compute because a node’s fidelity is only determined by the
fidelity of its children. However, Gc(∗) is determined by both
the fidelity and the cost of its children for the purification
operation. Therefore, Gc(∗) for a purification node (denoted
by GP

c (∗)) is actually a vector of two partial gradients, i.e.,
GP

c (∗) = (GP
c,f (∗), GP

c,c(∗)). For the swapping operation, the
cost gradient GS

c (∗) is only determined by the cost of its
children, so we set GS

c,f (∗) = 0. Thus, for either swapping
or purification, we have three gradients to calculate, resulting
in six gradients in total.

Suppose that we are calculating the gradients of node E in
Fig. 5 (when the algorithm reaches its parent node B), we use

GS
f (E) =

∂S(fD, fE)

∂fE
·Gf (B), (8)

GS
c,c(E) =

∂S(cD, cE)

∂cE
·Gc,c(B) =

Gc,c(B)

Pr{S}
, (9)

GS
c,f (E) = 0,

GP
f (E) =

∂P (fD, fE)

∂fE
·Gf (B), (10)

GP
c,c(E) =

∂P (fD, fE , cD, cE)

∂cE
·Gc,c(B),

GP
c,f (E) =

∂P (fD, fE , cD, cE)

∂fE
·Gc,f (B). (11)

Based on the actual operation (swapping or purification) of E’s
parent node B, we use either Eq. (8, 9) or Eq. (10,11). Note
Gf (B) is the fidelity gradient of parent node B. When B is
not the root, Gf (B) is already calculated when the algorithm
reaches B’s parent node. If B is the root, its gradient is set to
1. For Eq. (9), the cost of swapping operations is calculated
by Eq. (7), thus ∂S(cD,cE)

∂cE
= 1

pB
= 1

Pr{S} .
When estimating the cost increase at the root A (caused

by this purification at E), ∆c(A) = (∆f (E),∆c(E)) ×
(Gc,f (E), Gc,c(E)), where ∆f (E) and ∆c(E) are the fidelity
and cost increase after purifying node E, both of which can
be locally computed. With the help of gradients, we are able
to estimate the impact of an operation on the root, without
tracing back to the root.

According to the chain rule, we can repeat such differenti-
ation for both functions from the root to all leaves. Then, for
CALC-EFFICIENCY(), the efficiency of node E is

δ(E) =
∆f (A)

∆c(A)
=

∆f (E)×Gf (E)

(∆f (E),∆c(E))× (Gc,f (E), Gc,c(E))
.

(12)

PURIFY(). To purify a node, for example, E, we need to (i)
make a copy of this node, say E′, (ii) create a new purification
node P whose children are E and E′, (iii) replace the node
E by P in the tree.

TABLE I
DEVICE PARAMETERS FOR WERNER AND BINARY SYSTEMS.

Setting α1 α2 η Pr{Sw} Pr{Sb}
P 1 1 1 1 1
H 1− 10−5 1− 10−5 1− 10−4 0.75 0.75
L 1− 10−3 1− 10−3 1− 10−2 0.5 0.5

P: perfect (no error/noise); H/L: high/low accuracy/reliability.

TABLE II
NETWORK DESCRIPTION.

Scale SD # Topology |V | |E|
Small 13 AT&T 25 104
Medium 25 G(50, 0.1) 50 121
Large 50 P (100, 2) 100 196

Finally, BACKWARD(). Suppose we have just performed
PURIFY for a node (or a subtree), now we need to update all
ancestors of the new node P . The red arrows in Fig. 5 show
the trace of BACKWARD(). We backtrack from node P until
the root. Whenever reaching a new ancestor, we re-calculate its
fidelity and cost using the new information from its children.

In the next round, if we hope to do another purification,
GRAD() and CALC-EFFICIENCY() will update the gradients
and efficiencies of all nodes. The loop is repeated until the
E2E fidelity reaches the threshold.

Analysis: An implicit property of the TREE method is
that its output SPT is always an RT in Binary systems. This
property is favorable because, though not all RTs are optimal,
they include optimal trees in Binary systems (by Theorem 1).

Theorem 3: For Binary systems (f ∈ (0.5, 1)), TREE
method never purifies a SWAP node and generates an RT.

Proof: Note that if swapping nodes are never purified,
we cannot get a non-trivial PRR pattern in the tree so it is an
RT; if the tree is not an RT, there must be at least one non-
trivial PRR, which implies that a swapping node is purified.
Due to space limitations, we only briefly introduce how to
prove that the swapping node cannot be more efficient than
its two children at the same time. We can instantiate Eq. (12)
for a swapping node and its two children. Then, we build a
set of two inequalities: one states that the parent’s efficiency
is greater than the left child’s; the other states that the parent’s
efficiency is greater than the right child’s. Solving the set of
inequalities, we can see that it requires (fl − 1

2 )(fr −
1
2 ) >

1
4

or (fl − 1
2 )(fr − 1

2 ) < − 3
4 , where fl/fr is the fidelity of

the left/right child. Since both fl and fr are in (0.5, 1), the
inequality set can never be satisfied. That is, the efficiency of
any swapping node cannot be greater than its two children
at the same time, so the TREE algorithm never purifies a
swapping node (but its children or deeper descendants).

VI. EVALUATIONS

To evaluate the proposed method and the baselines, we have
conducted experiments for both Binary and Werner systems
under different operations (gates) noise levels.
A. Experiment Setup

Default Network Settings. Each SD pair requires no more
than 10 entanglements. Node memory is 100 and link capacity
is 50 (by [34]). For Binary systems, link fidelity is randomly



drawn from (0.7, 0.95) based on [10]. For Werner systems,
we set it drawn from (0.95, 1), since it is harder to maintain
connections in Werner systems. The number of candidate
paths between any SD pair is set to 5. The accuracy (or
success probability) of quantum gates is specified in Table I,
set based on current/near future achievable devices [27]–[29],
[35], [36]. In the table, α1, α2, η represent the fidelity of 1-
qubit, 2-qubit, and BSM gates used for noisy Werner systems.
For network topology, we use three types of network size
summarized in Table II. AT&T is a real topology from [37],
G(n, p) and P (n,m) are Erdos-Renyi graphs with parameters
n/p and preferential attachment model with parameters n/m,
respectively. Those networks/models have been used in [9].

Baselines. We compared five different SPS methods (three
existing methods and two of our proposed methods), which
can be grouped into two groups.

Group 1 includes methods designed for OSPS, i.e., accept-
ing the E2E fidelity threshold as input and minimizing the
used entanglements to reach the fidelity threshold.

1) TREE: our proposed branching tree method in Section V.
2) GRDY: a greedy algorithm [11] that greedily selects the

link with the highest final fidelity increase.
3) EPP: an entanglement path preparation method [10] that

greedily finds the link with the largest fidelity gradient.
Group 2 contains methods for OFSPS, i.e., needs a pre-

determined budget and aims to find the highest achievable
fidelity. Note that the real used cost may be higher than the
budget (because these methods do not consider failures), and
some may not be able to generate a feasible solution for OSPS.

4) DP-x: our proposed DP solution in Section III-D with a
input budget of x times the cost given by TREE method.

5) NESTED: the nested (hybrid) purification method from
[13], which is based on a fixed SPS and requires the total
budget should be (ly)z , where l is the fragment length, y
is the budget for each link per level, and z is the nest level.
Here, we decide the best l, y, and z according to the path
length and budget from TREE method. The calculated y
can be fractional, so we use both its floor and ceiling
(denoted as NESTED-F and NESTED-C).

Note that we do not include the methods from [17] because
they do not consider operation failures and it is non-trivial to
calculate their methods’ real expected cost under failures.

Performance Metrics. To evaluate the proposed methods
and baselines, we focus on their competency in providing high-
fidelity entanglements. We compare their (i) cost (number of
sacrificial entanglements) required to reach specific fidelity on
a single path; (ii) impact on network-wide throughput under
fidelity requirements. For a fair comparison in the network-
wide throughput, we use the entanglement path selection
method from [10] as the network scheduler for all baselines.

B. Evaluation Results

We first report the results on path efficiency in both Binary
and Werner systems, then show their network throughput
performances. Results are the average of 20 separate runs.

(a) F ∗ = 0.9 (b) F ∗ = 0.99
Fig. 6. Path efficiency (cost) of all methods with different F ∗ in Binary
systems (device level H, i.e., Pr{Sb} = 0.75).

(a) Pr{Sb} = 1.0 (b) Pr{Sb} = 0.5
Fig. 7. Path efficiency (cost) of all methods under different device reliability
levels in Binary systems (F ∗ = 0.99).

1) Path Efficiency in Binary System: We now investigate
how well the algorithms can establish one single E2E en-
tanglement on one single path. Fig. 6 provides the results
of all methods in the Binary system under different fidelity
thresholds. NESTED methods (and sometimes other methods)
typically use significantly more entanglements compared to
TREE and DP, so they are drawn in a logarithmic scale
(right y-axis). For clarity, we limit the right y-axis to 106,
so NESTED is sometimes cut-off as its cost is too large on
long paths. We can observe the following. First, to generate
E2E entanglement on a longer path, more entanglements (i.e.,
larger cost) are needed. Second, for higher fidelity requirement
F ∗, a larger cost is needed. Third, for all cases (different F ∗),
our method TREE uses the least number of sacrificial entangle-
ments (except the tuned DP methods, explained later), which
implies it can achieve higher network-wide throughput when
employed by a network-wide scheduler. Last, when F ∗ is
closer to 1, the more entanglement resources our method saves
compared with GRDY, EPP and NESTED. Although GRDY
and EPP follow the PS strategy, they do not perform well
since they simply use sequential swapping and purification.
While TREE is agnostic to the SPS schemes, it automatically
follows the PS, and conducts shape search for PTs. NESTED
fluctuates heavily because it performs much better at certain
path length that can be written as exponents, such as 4 and 8.

Fig. 7 plus Fig. 6(b) shows the results with different reliabil-
ity levels when F ∗ = 0.99. We have three reliability (Pr{Sb})
levels (P, H, L) for Binary systems as shown in Table I.
Obviously, lower reliability leads to larger costs. Fig. 8(a) also
reports the achieved E2E fidelity when F ∗ = 0.99 and device
level is H . As shown in Figs. 6, 7, 8(a), NESTED methods
consume much more entanglements than TREE does, while



(a) Binary, F ∗ = 0.99 (b) Werner, F ∗ = 0.9
Fig. 8. Achieved E2E fidelity of different methods in Binary and Werner
systems when the device level is H .

(a) Binary, F ∗ = 0.99 (b) Werner, F ∗ = 0.9
Fig. 9. Running time of different methods in Binary and Werner systems
when the device level is H .

still cannot generate comparable E2E fidelity in most cases.
Again, it may perform well at certain path lengths (like 8 and
9) due to its design, but significantly worse at other lengths.

Fig. 9(a) reports the running time of all methods. Obviously,
a longer path or higher F ∗ leads to longer running time.
NESTED is always the most efficient one as it uses a pre-
determined SPS. TREE, GRDY, and EPP all use greedy strate-
gies, so they have similar running time performance. We pick
DP-1.2/1.3 to represent the DP method because (i) they cost
slightly fewer or more entanglements compared with TREE
(Fig. 6 and Fig. 7); (ii) their achieved E2E fidelity is slightly
lower or higher than TREE’s (Fig. 8(a)). Not surprisingly, DP
is inefficient as it has to try all budget splits, which can be very
large when the path is long. The running time of DP increases
drastically as the path length increases, so we do not test it
on long paths here.

In summary, in Binary systems, NESTED performs the
worst in terms of fidelity and cost. Recall that Theorem 1
shows that the OSPT in Binary systems should arrange purifi-
cation before swapping. But NESTED clearly disobeys such a
structure. The other methods follow the PS structure, resulting
in better efficiency compared to NESTED.

2) Path Efficiency in Werner System: We also compare
TREE with Group 2 methods (DP and NESTED) in terms
of fidelity, cost, and running time in Werner systems. We do
not consider GRDY and EPP here, since both do not work in
Werner systems. For example, both cannot purify a simple 2-
hop path: set links fidelity and threshold F ∗ to 0.95, the outer
loops in GRDY/EPP cannot stop.

Figs. 10, Fig. 8(b) and Fig. 9(b) show the results in
Werner systems with highly reliable devices. We can draw
similar conclusions regarding all methods similar to that in
Binary systems. DP-1.3 and DP-1.4 consume similar costs and

(a) F ∗ = 0.9 (b) Werner, F ∗ = 0.95
Fig. 10. Path efficiency of Group 2 methods under different F ∗ in Werner
systems when the device level is H .

(a) device level of P (b) device level of L
Fig. 11. Path efficiency of Group 2 methods under different device reliability
levels in Werner systems (F ∗ = 0.9).

achieve similar fidelity to TREE’s, but still become extremely
inefficient in terms of running time when the path is long.
NESTED behaves similarly in Werner systems compared with
Binary ones: (i) it typically consumes much more entan-
glements while does not achieve comparable E2E fidelity
compared with TREE; (ii) it performs better when the path
length is an exponent; (iii) it usually finishes quickly. Overall,
our proposed method TREE still performs best in Werner
systems with highly reliable devices.

We also consider Werner systems with devices of different
reliability levels in Fig. 11 when F ∗ = 0.9. Results are similar
to those in the highly reliable Werner system (Fig. 10(a)).
The difference is that all methods need more entanglements
to achieve the same fidelity when the system is noisy.

3) Network Throughput in Binary/Werner Systems: Finally,
we evaluate the network-wide throughput when the proposed
TREE and baselines (if work in the corresponding scenarios)
are used for solving the candidate paths in a network scheduler
[10] in both Binary and Werner systems. We consider three
sizes of networks, defined in Table II. We do not include DP
in this evaluation because it requires too long time for long
paths even in a small network and if such paths are selected
the scheduler will be stuck by DP. GRDY and EPP are not
tested for Werner systems as they do not work there.

Results are reported in Fig. 12. Obviously, in a smaller
network (so less demands), the throughput of all methods
is smaller. More importantly, in all cases, our method TREE
achieves the highest throughput among all methods. We also
perform tests over different F ∗ and different noise levels (P, H
and L), but due to space limitations, we ignore reporting the
results here. Among the different noise levels, a lower noise
level always leads to higher throughput.



(a) Binary, F ∗ = 0.99 (b) Werner, F ∗ = 0.9
Fig. 12. Network throughput of all methods for networks with different sizes
when the device level is H.

VII. CONCLUSION

We studied the joint swapping and purification scheme
to generate the required E2E fidelity for an SD pair while
the consumed entanglements are minimized. We considered
more general assumptions (both Binary and Werner systems
with possible failures of swapping/purification operations). By
leveraging tree-based modeling, we proved that the optimal
SPS in Binary systems is a PS strategy where purification
is before swapping. We then proposed a tree-based solution
that first time works for the SPS problem in both Binary
and Werner systems. We confirmed nice performances of the
proposed method compared with existing solutions in both
Binary and Werner systems via extensive simulations.
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