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Abstract—Distributed Quantum Computing (DQC) enables the
execution of quantum circuits across multiple interconnected
quantum processing units (QPUs), but requiring efficient qubit
allocation and network topology design to optimize computational
performance. Proper qubit allocation minimizes entanglement
costs across QPUs, balances computational workload, and en-
sures efficient execution of quantum computing tasks. Meanwhile,
network topology plays a crucial role in reducing entanglement
routing complexity and communication overhead for remote
quantum gate operations. In this paper, we propose a joint
optimization framework for network topology design and qubit
allocation in DQC to minimize the communication overhead.
We formulate the problem as a tractable integer nonlinear
programming model that explicitly incorporates entanglement
routing, thereby ensuring a more tractable optimization process.
To further improve computational efficiency, we present a par-
tially linearized version of the problem, making it solvable using
any classical optimization solver. Extensive simulations on both
random and real-world quantum circuits validate the effective-
ness of our proposed approach, demonstrating its capability to
handle complex quantum circuits while reducing communication
costs in DQC.

Index Terms—Topology Design, Qubit Allocation, Quantum
Computing, Quantum Networks

I. INTRODUCTION

Distributed quantum computing (DQC) [1] represents a
promising paradigm for scaling quantum computing beyond
the physical limitations of individual quantum processing units
(QPUs). In DQC, multiple quantum nodes, each with its own
QPU processor, are interconnected via quantum communica-
tion channels (as illustrated in Fig. 1) to collaboratively exe-
cute tasks that exceed the capacity of any single node. Such an
approach leverages entanglement and quantum swapping over
the underlying quantum network to facilitate inter-node com-
munication, thereby enabling the distribution of quantum states
and operations. DQC has great potential for solving large-scale
problems in areas like optimization, artificial intelligence [2],
cryptography, and material simulation, thus positioning itself
as a cornerstone for future quantum technologies.

Current research in DQC or quantum networks focuses on
several key challenges such as optimizing qubit allocation [3],
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Fig. 1. Distributed quantum computing (DQC): a set of QPUs are intercon-
nected via a quantum network, and each QPU has certain amount of physical
qubits which can be used as data qubits or communication qubits.

[4] or circuit distribution [5]–[14] across nodes, designing
efficient network topologies [15]–[17], optimizing quantum
compiler framework [18]–[20], and overcoming the inherent
noise and decoherence [21]–[23] in DQC.

DQC differs from classical distributed computing in several
key ways. DQC leverages qubits, which can exist in superpo-
sition and entanglement, enabling parallelism beyond classical
capabilities. However, unlike classical distributed systems,
where data can be copied and transmitted via inter-connected
networks easily, DQC relies on quantum entanglement and
teleportation for quantum communication [24]–[26], facing
challenges due to qubit fragility and decoherence. Therefore,
while classical distributed systems scale efficiently with estab-
lished resource management techniques, DQC requires more
careful qubit allocation and network topology design.

In DQC, a quantum algorithm (or quantum circuit) over
multiple data qubits (called logical quibts) needs to be dis-
tributed to a group of QPUs so that it can be collaboratively
performed. Each QPU has certain physical qubits which can
be used for either computation or communication purposes, as
shown in Fig. 1. Qubit allocation is the process of efficiently
assigning and managing qubits across multiple interconnected
QPUs to optimize computational performance, as shown in
Fig. 2. Proper qubit allocation is crucial for DQC because: 1)
Allocating qubits must minimize the need for long-distance
entanglement generation between QPUs, which is costly due to
decoherence and fidelity loss; 2) Qubits are a scarce resource,
and their allocation must balance computational workload
and entanglement needs; and 3) Allocating qubits efficiently
ensures that distributed quantum computing tasks are executed



Fig. 2. Qubit allocation and topology in DQC: mapping a qubit interaction
graph graph (QIG, modeled by graph 𝐺′) onto the quantum network (QN,
modeled by graph 𝐺) to minimize the communication cost. Here, the weight
on a link in 𝐺′ is the number of two-qubit gate operations between two logical
quibts. Note that the quantum circuit is for illustration purposes only, and it
is by no means meant as a realistic circuit.

with minimal latency and maximal parallelism. Effective qubit
allocation strategies also need to consider network topology,
available quantum links and entanglement resources, and error
rates to enhance the efficiency of DQC systems.

In this paper, we consider the co-design of network topology
and qubit allocation for DQC to minimize the total commu-
nication overhead while fulfilling faster and reliable entangle-
ment distribution for supporting the execution of remote gates
in DQC tasks. Note that DQC tasks require frequent qubit
iterations and entanglement swappings between QPUs in the
underlying quantum network. A well-designed topology can
minimize entanglement routing complexity, reducing commu-
nication cost and decoherence. While Mao et al. [17] have
studied a similar topology design problem in DQC, they do
not explicitly model the swapping routing into the optimization
problem, which makes their optimization problem challenging
to solve. In addition, solely relying on the shortest paths be-
tween QPUs as the entanglement route limits the performance
of their proposed solution. In this paper, we first formulate
the co-design problem as an integer nonlinear programming
problem, where the entanglement routing has been embedded
directly in the formulated problem. Then, we further convert
this problem into a simpler format via partial linearization,
which enable more efficient solving by the solver. Both
problems can be solved by any classical solver, such as Gurobi
[27] and CPLEX [28]. We conduct extensive simulations using
both random and real-world quantum circuits. Results confirm
the efficiency of our proposed formulation and solution.

The remainder of this paper is organized as follows. Sec-
tion II briefly reviews the existing works in DQC and Sec-
tion III introduces our system model. The joint optimization
problem is formulated in Section IV. Evaluations of the pro-
posed method are provided in Section V. Finally, Section VI
concludes the paper with possible future directions.

II. RELATED WORKS

DQC [1] has three different architypes: multi-core, multi-
computer, and multi-farm architectures. Regardless of the
DQC types, qubit allocation plays a crucial role in optimizing
computation efficiency, minimizing communication overhead,
and ensuring the reliability of quantum circuits across multiple
QPUs. In this section, we briefly review existing works on

qubit allocation in DQC, which can be categorized into circuit
partitioning and scheduling, network-aware qubit allocation,
and topology co-design.

Quantum Circuit Partitioning and Scheduling. Many
works have investigated how to partition quantum circuits for
distributed execution in DQC. Sundaram et al. [5] propose
efficient methods for distributing quantum circuits over multi-
ple QPUs. Their method first partitions the given circuit across
QPUs and then for each partition determines a small set of mi-
grations (via cat-entanglement operations) that are sufficient to
execute/cover all the non-local gates in the circuit. Sundaram
et al. [6], [7] further explore teleportation-based techniques
for distributing circuits across quantum networks with the
objective of minimizing the number of teleportations needed
to implement gates spanning multiple QPUs. Dadkhah et al.
[8] also consider optimize the distributed quantum circuits.
Their method reorders the qubit placement in a initial quantum
circuit to improve the execution time, then partitions the new
quantum circuit using genetic algorithm to obtain a distributed
quantum circuit so that the number of teleportation costs is
reduced. Baker et al. [9] explore time-sliced partitioning of
quantum circuits to modular physical machines in a cluster
to improve execution on modular architectures. For each time
slice at a time, their method optimizes the mappings to reduce
the cost to move data from the previous time slices. Other
works [10]–[14] apply methods like hypergraph partitioning
[13], dynamic programming [11] and evolutionary algorithm
[14] to optimize quantum circuit distribution. These works
primarily aim at minimizing inter-processor communication or
the number of teleportations but do not explicitly consider the
impact of network conditions and entanglement availability.
Ferrari et al. [18], [19] also study the general quantum
compiler design for DQC, analytically derive a theoretical
bound of the overhead induced by quantum compilation, and
present a modular quantum compilation framework for DQC
that takes into account both network and device constraints.

Network-Aware Qubit Allocation. Several recent studies
have incorporated more network considerations into qubit
allocation in DQC. Mao et al. [3] formulate a qubit alloca-
tion problem where the network cost of a remote CNOT is
assumed linear to the number of hops of the shortest path
between two QPUs in a quantum network. They propose
a heuristic local search algorithm and a multistage hybrid
simulated annealing algorithm to solve the formulated qubit
allocation problem. The same authors [4] further extend the
problem to a probability-aware qubit-to-processor mapping
model, where the network overhead between two QPUs is
determined through probabilistic analyses based on the link
entanglement generation rates. A multistage hybrid simulated
annealing algorithm with multi-flow routing is then proposed
to minimize the total network overhead. Cuomo et al. [20]
also explore compiler optimizations tailored for QDC, aiming
to minimize communication costs with inter-processor connec-
tivity restrictions. They formulate the distributed compilation
problem as a dynamic network flow problem, where a flow is
a set of entanglement paths used by the telegates.



TABLE I
LIST OF SYMBOLS.

Symbol Description
𝑄, 𝑞𝑎 the set of logical qubits and 𝑎-th logical qubit
𝐶 the set of edge (CNOT gates between qubits) in QIG

𝑐𝑎,𝑏 the number of qubit gates required between 𝑞𝑎 and 𝑞𝑏
𝑉 , 𝑣𝑖 the set of QPUs and 𝑖-th QPU
𝐸 the set of edges between QPUs in QN

𝑏𝑢,𝑧 the weight/cost of quantum link between 𝑣𝑢 and 𝑣𝑧
𝑚𝑖 , 𝑛𝑖 the maximal data/communication qubits on QPU 𝑣𝑖
𝑊 the maximal number of edge in final topology
𝑥𝑎,𝑖 whether logical qubit 𝑞𝑎 is assigned to QPU 𝑣𝑖

𝑝𝑖, 𝑗,𝑢,𝑧 whether the path between 𝑣𝑖 and 𝑣 𝑗 uses edge (𝑣𝑢 , 𝑣𝑧 )
𝑤𝑢,𝑧 whether edge (𝑣𝑢 , 𝑣𝑧 ) used by selected paths
𝑦𝑖, 𝑗 whether at least one RCNOT demand between 𝑣𝑖 and 𝑣 𝑗

Network Topology Design. The network topology has a
significant impact on the efficiency of quantum network. Yu
et al. [15] discuss quantum internet topology design, empha-
sizing on the impact of topology on the rate of entanglement
distribution and the fidelity of entangled pairs, when serving
multi-commodity quantum communication demands. Liu et al.
[16] also investigate how network topology can be optimized
alongside resource allocation and entanglement distribution
strategies to improve the performance of quantum networks.
Only recently has the joint optimization of network topology
and qubit allocation gained attention in DQC. Mao et al. [17]
consider such a joint topology design problem in DQC for a
set of test quantum circuits, with the goal of minimizing the
overall communication overhead after distributing the quantum
circuits. The communication overhead depends on an “implicit
function” of distance between each pair of GPUs based on
the shortest paths in the topology. Such implicit function
make the mathematical deduction and simplification of the
formulated problem much harder. The authors design a meta-
heuristic algorithm based on simulated annealing to find the
near-optimal topology for random quantum circuits. They also
provide an extended algorithm to generate dedicated network
topologies tailored for specific quantum circuits. Since their
proposed methods limit the entanglement path to the shortest
path in the topology, the solution space is restricted to a
much smaller space than the real feasible space which hurts
their performances. In this paper, we consider the similar
topology co-design with qubit allocation for DQC, but provide
a formulation of the problem with an explicit expression of
entanglement paths so that the formulated problem can be
solved by existing classical solvers directly.

III. SYSTEM MODEL

In this section, we first present our DQC model and the
model for underlying quantum network (QN), then introduce
the qubit allocation and topology formation problem where
the communications among logical qubits are transferred to
the communications among quantum servers. Major notations
used in this paper are summarized in Table I.

A. Distributed Quantum Computing Model

Single qubit gates plus Controlled-NOT (CNOT) gates are
universal in quantum computing [29], i.e., one can implement
any quantum algorithm by only using single qubit gates and
CNOT gates. Thus, in this paper, similar to previous works

[3], [4], we focus on distributing quantum circuits with only
single qubit gates and CNOT gates (as the example in the left
part of Fig. 2). Besides, to optimize the communication cost
in DQC, we can ignore single qubit gates in our design since
they will be conducted on a single QPU without requirement
of any communication.

Since we concentrate on the communication cost of DQC,
any quantum circuit can be abstracted into a Qubit Interac-
tion Graph (QIG) to reflect the needs of number of CNOT
operations without loss of generality. As shown in the middle
of Fig. 2, QIG depicts between which two qubits there are
CNOT gates and how many CNOT gates are needed. In the
QIG, each node represents a logical qubit 𝑞𝑎, and each edge
(𝑞𝑎, 𝑞𝑏) represents the existence of CNOT gates between two
qubits 𝑞𝑎 and 𝑞𝑏. If there are more than one CNOT gates
required between these two qubits, the edge weight 𝑐𝑎,𝑏 is
the number of CNOT gates. Given a quantum circuit, we can
form its QIG 𝐺′ (𝑄,𝐶), where 𝑄 is the set of all its qubits
and 𝐶 is the edge set of CNOT gates between the qubits. For
example, in the QIG in Fig. 2, we have 𝑐1,5 = 1 and 𝑐1,2 = 2
since there are one CNOT gate between 𝑞1 and 𝑞5 and two
CNOT gates between 𝑞1 and 𝑞2 in the circuit, respectively.
Obviously, the QIG captures all possible communications in
the corresponding circuit, thus informative enough in the
context of communication cost minimization.

After the qubit allocation (distributing all logical qubits
to the QPUs in the underlying quantum network), when
two logical qubits reside on the same processor, the CNOT
gates between them can be easily done by the QPU. For
example, in Fig. 2, because 𝑞1 and 𝑞2 are mapped to the
same server 𝑣1, the two CNOT gates can be done solely by
𝑣1, thus require no communication even 𝑐1,2 ≠ 0. However,
when the two qubits are on two different processors, remote
CNOT (RCNOT) should be used to replace CNOT and inter-
QPU communications. For example, both 𝑞4 and 𝑞5 need to
communicate with 𝑞1 and they are mapped to different servers
(𝑞4 and 𝑞5 on 𝑣3 while 𝑞1 on 𝑣4), then we need communication
resources (entanglements) for two RCNOT gates collabora-
tively conducted by 𝑣1 and 𝑣3. RCNOT basically works in
the same way as CNOT, but it allows the flexibility of the
residence of the two qubits by additionally consuming one
entanglement between the two corresponding processors. For
more details about CNOT/RCNOT, we refer readers to [17].

B. Quantum Network and Resources

Our quantum network (QN) is a network of quantum
processors or QPUs which hold physical qubits. We should
map the logical qubits in quantum circuits to the physical
qubits on quantum processors in QN to execute the circuit.
Each of the QPU 𝑣𝑖 has a memory capacity to hold up to
𝑚𝑖 physical data qubits (or called computation qubits). Except
for offering physical qubits on its nodes, quantum networks
are also responsible for providing entanglements for RCNOT
gates. Those entanglements are first generated by the edges
in the quantum network, and then connected to form E2E
entanglements between processors where there are RCNOT



Fig. 3. Quantum swapping in QN: A swap operation at 𝑣2 to establish the
entanglement between 𝑣1 and 𝑣3.

gates. We can form a graph 𝐺 (𝑉, 𝐸) for the underlying
quantum network, where 𝑉 is the set of processors/QPUs 𝑣𝑖
in the network, and 𝐸 is the set of edges (possible quantum
links) among the QPUs. For the quantum link (𝑣𝑖 , 𝑣 𝑗 ) between
QPUs 𝑣𝑖 and 𝑣 𝑗 , we can define an edge weight 𝑏𝑖, 𝑗 as the cost
factor of that quantum link. For different DQC types (such as
multi-core or multi-farm), this edge weight can be defined
differently and accordingly. Each of the QPU 𝑣𝑖 can at most
maintain 𝑛𝑖 edge due to the limit of communication qubits.
Note that maintaining quantum link in QN is costly, thus,
we prefer a sparse network topology while maintaining the
connectivity for QDC. Our formulated optimization will have
a constraint on the number edge in the final topology.

To build E2E entanglements between two QPUs which
are not directly connected by quantum links in 𝐺, quantum
swappings are performed on the intermediate nodes. Fig. 3
shows how two adjacent entanglements can be connected.
At the beginning, we have two crude entanglements between
(𝑣1, 𝑣2) and (𝑣2, 𝑣3). They are generated by the quantum link
between those nodes. There is no direct link between (𝑣1, 𝑣3)
so we are unable to obtain an entanglement between them di-
rectly. However, we can perform a swapping operation (using
Bell State Measurement (BSM) gates) on node 𝑣2 to connect
entanglements (𝑣1, 𝑣2) and (𝑣2, 𝑣3), after which we can obtain
an entanglement between (𝑣1, 𝑣3). Such swapping operations
can be repeated to obtain a pair of E2E entanglements on
desired node pairs in QN. These E2E entanglements between
processor pairs can be used by RCNOT gates. The classic
communications parts in RCNOT or swapping operations are
ignored here as they do not affect our design. Note that swap-
pings may not always succeed, and the success probability
upperbounds vary (e.g., 50% [30], 62.5% [31], 75% [32], or
100% [33] (no failure but inefficient)), determined by their
implementations. In this paper, for simplicity, we assume that
the swapping success probability is a constant 𝜌.

C. Qubit Allocation and Topology Formation

With the given QIG 𝐺′ and QN 𝐺, we can consider a joint
topology design and qubit allocation problem to optimize the
total communication cost of DQC. As shown in Fig. 2, a
qubit allocation solution is essentially a graph partition: qubits
assigned to the same QPU are one group, and the cross-group
edges are the communications among the QPUs. In Fig. 2, the
group of 𝑞1 and 𝑞2 are mapped to 𝑣1 and the group of 𝑞4 and
𝑞5 are mapped to 𝑣3. Then, the cross-edges between the two
groups are the communications between 𝑣1 and 𝑣3 (2 RCNOTs
in this case). Additionally, if there is no direct quantum link
between 𝑣1 and 𝑣3, the RCNOT between 𝑞1 and 𝑞4 can only be
served by creating E2E entanglements by the QN, i.e., creating
one entanglement between (𝑣1, 𝑣2) and (𝑣2, 𝑣3) separately and
connect them by a swapping on 𝑣2 as done in Fig. 3. In Fig. 2,

the result of this joint topology design and qubit allocation
include both the qubit mapping from 𝐺′ to 𝐺 and the resulting
network topology (a subgraph of 𝐺 including all quantum
links and entanglement paths for inter-QPU communications).
Notably, graph partition problems are proven to be NP-hard
and, unless 𝑃 = 𝑁𝑃, no reasonable approximation algorithm
exists. This inherently makes our joint optimization also NP-
hard as it is a more general problem compared graph partition.

IV. CO-DESIGN OF NETWORK TOPOLOGY AND QUBIT
ALLOCATION: A JOINT OPTIMIZATION PROBLEM

We now formally define the optimization problem of our
topology co-design with qubit allocation. We first present it in
the most intuitive original formulation, then reformulate it into
an equivalent but more tractable problem. Both versions can
be solved by the existing integer programming solver, such as
Gurobi and CPLEX.

In our model we use two graphs 𝐺′ and 𝐺 to model QIG
and QN respectively. Both 𝐺′ and 𝐺 are undirected. However,
routing E2E entanglements in QN requires finding the best
paths between any two nodes in 𝐺. This is challenging while
the topology itself is to be determined. Note that [17] uses an
iterative heuristic solution to optimize topology and allocation
which is complicated. In our formulation, we use a directed
QN topology so that the entanglement path can be implicitly
embedded into our joint optimization as constraints, which
enable efficient solutions from existing solver.
A. Problem Formulation

We first define our objective function, which is minimizing
the total communication cost of the DQC, i.e., the summation
of the communication cost incurred between any QPU pairs
(𝑣𝑖 , 𝑣 𝑗 ) in QN 𝐺. For each node pair (𝑣𝑖 , 𝑣 𝑗 ), its entanglement
is routed via an entanglement path between them. Therefore,
the optimization objective is∑︁

𝑖< 𝑗

(∑︁
𝑢,𝑧

𝑏𝑢,𝑧 𝑝𝑖, 𝑗 ,𝑢,𝑧

∑︁
𝑎,𝑏

𝑐𝑎,𝑏𝑥𝑎,𝑖𝑥𝑏, 𝑗

)
. (1)

Here, 𝑥𝑎,𝑖 is a binary indicator whether logical qubit 𝑞𝑎 ∈ 𝑄

is assigned to server 𝑣𝑖 ∈ 𝑉 , and 𝑝𝑖, 𝑗 ,𝑢,𝑧 is a binary indicator
whether the entanglement path between servers 𝑣𝑖 and 𝑣 𝑗 uses
the directed edge (𝑣𝑢, 𝑣𝑧). In other words, 𝑥𝑎,𝑖 and 𝑝𝑖, 𝑗 ,𝑢,𝑧
are the decision variables for qubit allocation and network
topology, respectively. Recall that 𝑐𝑎,𝑏 is the number of CNOT
gates between 𝑞𝑎 and 𝑞𝑏 in QIG, thus

∑
𝑎,𝑏 𝑐𝑎,𝑏𝑥𝑎,𝑖𝑥𝑏, 𝑗 is

the total number of RCNOT required between servers 𝑣𝑖 and
𝑣 𝑗 . 𝑏𝑢,𝑧 is the associated weight/cost of the edge (𝑣𝑢, 𝑣𝑧),
and therefore

∑
𝑢,𝑧 𝑏𝑢,𝑧 𝑝𝑖, 𝑗 ,𝑢,𝑧 is the weighted length (or cost,

determined by the definition of 𝑏𝑢,𝑧1) of the entanglement path

1We can adopt different definitions of edge weight 𝑏𝑢,𝑧 under different
scenarios. For example, in the multi-farm DQC (e.g. remote data centers)
it can be associated with the quantum link length to quantify the path cost
(which is typically exponentially affected by the length); in the multi-core
DQC (e.g., on-chip QPUs), we can set all 𝑏𝑢,𝑣 = 1 as the distances among
on-chip processors are almost negligible. Besides, swappings may not always
succeed, as shown by [16], given swappings succeed at probability 𝜌, when
path length doubles, the cost of one E2E entanglement is increased to 2

𝜌
times.

Therefore, in our model, we can simply use the path length as the cost of an
E2E entanglement over the path, ignoring the co-efficient in the optimization.



between 𝑣𝑖 and 𝑣 𝑗 . Our overall objective is to minimize the
communication cost of all RCNOT gates between all server
pairs in the network.

We now present the original formulation of our joint opti-
mization problem as follows.

P1 : min
𝑥,𝑝

∑︁
𝑖< 𝑗

(∑︁
𝑢,𝑧

𝑏𝑢,𝑧 𝑝𝑖, 𝑗 ,𝑢,𝑧

∑︁
𝑎,𝑏

𝑐𝑎,𝑏𝑥𝑎,𝑖𝑥𝑏, 𝑗

)
s.t. qubit allocation∑︁

𝑖

𝑥𝑎,𝑖 = 1, ∀𝑞𝑎 ∈ 𝑄, (2)∑︁
𝑎

𝑥𝑎,𝑖 ≤ 𝑚𝑖 , ∀𝑣𝑖 ∈ 𝑉, (3)

topology sparsity∑︁
𝑧

[
1 −

∏
𝑖< 𝑗

(1 − 𝑝𝑖, 𝑗 ,𝑢,𝑧) (1 − 𝑝𝑖, 𝑗 ,𝑧,𝑢)
]
≤ 𝑛𝑢,∀𝑣𝑢 ∈ 𝑉,

(4)∑︁
𝑢<𝑧

[
1 −

∏
𝑖< 𝑗

(1 − 𝑝𝑖, 𝑗 ,𝑢,𝑧) (1 − 𝑝𝑖, 𝑗 ,𝑧,𝑢)
]
≤ 𝑊, (5)

entanglement paths[∑︁
𝑢

𝑝𝑖, 𝑗 ,𝑖,𝑢 −
∑︁
𝑧

𝑝𝑖, 𝑗 ,𝑧,𝑖

] ∑︁
𝑎,𝑏

𝑥𝑎,𝑖𝑥𝑏, 𝑗 =
∑︁
𝑎,𝑏

𝑥𝑎,𝑖𝑥𝑏, 𝑗 ,

∀𝑖 < 𝑗 , (6)∑︁
𝑧

𝑝𝑖, 𝑗 ,𝑢,𝑧 −
∑︁
𝑧

𝑝𝑖, 𝑗 ,𝑧,𝑢 = 0, ∀𝑖 < 𝑗 ,∀𝑢 ∉ {𝑖, 𝑗}, (7)[∑︁
𝑢

𝑝𝑖, 𝑗 , 𝑗 ,𝑢 −
∑︁
𝑧

𝑝𝑖, 𝑗 ,𝑧, 𝑗

] ∑︁
𝑎,𝑏

𝑥𝑎,𝑖𝑥𝑏, 𝑗 = −
∑︁
𝑎,𝑏

𝑥𝑎,𝑖𝑥𝑏, 𝑗 ,

∀𝑖 < 𝑗 , (8)∑︁
𝑢,𝑧

𝑝𝑖, 𝑗 ,𝑢,𝑧 ≤ (|𝑉 | − 1)
∑︁
𝑎,𝑏

𝑥𝑎,𝑖𝑥𝑏, 𝑗 , ∀𝑖 < 𝑗 , (9)

decision variables
𝑥𝑎,𝑖 , 𝑝𝑖, 𝑗 ,𝑢,𝑧 ∈ {0, 1}. (10)

Constraints (2) and (3) are the qubit allocation constraints,
where the former ensures that each qubit is assigned to one
and only one QPU and the latter limits the number of assigned
qubits on each QPU not to exceed its memory capacity.

Constraint (4) limits the number of edges that QPU 𝑣𝑢 can
have due to the limit of its communication qubits. The term∏

𝑖, 𝑗 (1 − 𝑝𝑖, 𝑗 ,𝑢,𝑧) (1 − 𝑝𝑖, 𝑗 ,𝑧,𝑢) is 1 when 𝑝𝑖, 𝑗 ,𝑢,𝑧 = 𝑝𝑖, 𝑗 ,𝑧,𝑢 =

0 for any 𝑖 and 𝑗 , which means the undirected edge (𝑣𝑢, 𝑣𝑧) is
not used by any path. Therefore, the left side of Constraint (4)
is the number of edges associated to QPU 𝑣𝑧 .

Constraint (5) limits the network sparsity (i.e., the number
of edges in the final topology) not to exceed a threshold 𝑊 .
The left side of Constraint (5) is similar to that of Constraint
(4) but it summarize over all edges in the topology rather
than those associated to a specific QPU. Constraints (6)-(8)
are the flow constraints to form the entanglement paths among
QPUs. Ignoring the term

∑
𝑎,𝑏 𝑥𝑎.𝑖𝑥𝑏, 𝑗 , they are typical three

flow constraints for the source, intermediate, and destination

nodes on the entanglement path: out-degree minus in-degree
should be 1 at the source node, 0 at the intermediate nodes,
and −1 at the destination node.

∑
𝑎,𝑏 𝑥𝑎.𝑖𝑥𝑏, 𝑗 is added at both

sides to cancel the constraints if no demand over this path.
Constraint (9) forces no entanglement path for pair (𝑣𝑖 , 𝑣 𝑗 )
if it has no demand, avoiding disturbing topology constraints
(Constraints (3)-(4)).

Finally, all decision variables 𝑥𝑎,𝑖 and 𝑝𝑖, 𝑗 ,𝑢,𝑧 are binary.
Therefore, this formulated problem is a binary nonlinear
programming.
B. Reformulation

The original formulation (P1) might still be hard for existing
classic solvers (e.g., Gurobi and CPLEX) to solve because it
has several high degree terms, which need to be linearized
by adding intermediate variables. Therefore, in this subsection
we further simplify it into a partially linearized problem P2,
which is equivalent to the original one but can be solved more
efficiently by the classic solvers.

P2 : min
𝑥,𝑝,𝑤,𝑦

∑︁
𝑖< 𝑗

(∑︁
𝑢,𝑧

𝑏𝑢,𝑧 𝑝𝑖, 𝑗 ,𝑢,𝑧

∑︁
𝑎,𝑏

𝑐𝑎,𝑏𝑥𝑎,𝑖𝑥𝑏, 𝑗

)
s.t. qubit allocation∑︁

𝑖

𝑥𝑎,𝑖 = 1, ∀𝑞𝑎 ∈ 𝑄, (11)∑︁
𝑎

𝑥𝑎,𝑖 ≤ 𝑚𝑖 , ∀𝑣𝑖 ∈ 𝑉, (12)

topology sparsity∑︁
𝑧

𝑤𝑢,𝑧 ≤ 𝑛𝑢, ∀𝑣𝑢 ∈ 𝑉, (13)∑︁
𝑢<𝑧

𝑤𝑢,𝑧 ≤ 𝑊, (14)

𝑤𝑢,𝑧 ≤
∑︁
𝑖, 𝑗

(𝑝𝑖, 𝑗 ,𝑢,𝑧 + 𝑝𝑖, 𝑗 ,𝑧,𝑢) ≤ 𝑤𝑢,𝑧 · (2|𝑉 | ( |𝑉 | − 1)) ,

∀𝑢 < 𝑧, (15)
entanglement paths

𝑦𝑖, 𝑗 ≤
∑︁
𝑎,𝑏

𝑥𝑎,𝑖𝑥𝑏, 𝑗 ≤ 𝑦𝑖, 𝑗 ·
1
2
|𝑄 |, ∀𝑖 < 𝑗 ,

(16)∑︁
𝑢

𝑝𝑖, 𝑗 ,𝑖,𝑢 −
∑︁
𝑧

𝑝𝑖, 𝑗 ,𝑧,𝑖 = 𝑦𝑖, 𝑗 , ∀𝑖 < 𝑗 , (17)∑︁
𝑧

𝑝𝑖, 𝑗 ,𝑢,𝑧 −
∑︁
𝑧

𝑝𝑖, 𝑗 ,𝑧,𝑢 = 0, ∀𝑖 < 𝑗 ,∀𝑢 ∉ {𝑖, 𝑗}, (18)∑︁
𝑢

𝑝𝑖, 𝑗 , 𝑗 ,𝑢 −
∑︁
𝑣

𝑝𝑖, 𝑗 ,𝑣, 𝑗 = −𝑦𝑖, 𝑗 , ∀𝑖 < 𝑗 , (19)∑︁
𝑢,𝑧

𝑝𝑖, 𝑗 ,𝑢,𝑧 ≤ 𝑦𝑖, 𝑗 ( |𝑉 | − 1), ∀𝑖 < 𝑗 , (20)

decision variables
𝑥𝑎,𝑖 , 𝑝𝑖, 𝑗 ,𝑢,𝑧 , 𝑤𝑢,𝑧 , 𝑦𝑖, 𝑗 ∈ {0, 1}. (21)

In P2, first, the objective and the qubits assignment con-
straints (11) and (12) are unchanged. We then introduce a
binary indicator 𝑤𝑢,𝑧 for edge existence: 𝑤𝑢,𝑧 = 1 if any
entanglement paths use the directed edges (𝑣𝑢, 𝑣𝑧) or (𝑣𝑧 , 𝑣𝑢),



TABLE II
LIST OF USED CIRCUITS.

Circuit Qubit Number CNOT Number
adr4 14 1,498
clip 14 14,772
co14 15 7,840

rand24 24 18,600
rand32 32 75,600

otherwise 𝑤𝑢,𝑧 = 0, and add Constraint (15). With the help
of this indicator, we can simplify the topology constraints
(Constraints (13) and (14)). Similarly, we introduce a de-
mand indicator 𝑦𝑖, 𝑗 by adding Constraint (16): 𝑦𝑖, 𝑗 = 1 if
there is at least one RCNOT demand between servers 𝑣𝑖
and 𝑣 𝑗 , otherwise 𝑦𝑖, 𝑗 = 0. This simplifies path constraints
(Constraints (17), (19), and (20)). By introducing 𝑤𝑢,𝑧 and
𝑦𝑖, 𝑗 , Constraints (4), (5), (6), (8) and (9) are all reduced to
linear. These reduction, while not changing the NP-hardness
of the problem, greatly reduced the number of total variables
(including intermediate variables) in the problem, enabling us
to solve problems of larger scales.

V. EVALUATIONS

In this section, we conduct several sets of simulations
to evaluate the proposed formulation and solution of our
joint co-design problem by Gurobi [27] using both real-world
and randomly-generated quantum circuits. We first focus on
comparing the difference of the two formulations, especially
how our re-formulation makes the problem more efficient to
solve. Then we also verify the affect of quantum resources
and network topology sparsity on the overall performances.

A. Simulation Settings

Quantum Circuits. We pick both real-word and randomly
generated circuits as our testing circuits, as shown in Table II.
The circuits adr4, clip, co14 are chosen from RevLib [34],
and their compiled files are available at [35]. The maximum
number of the circuits from [35] is no more than 15, so we
also randomly generated circuits with 24 and 32 qubits for
testing. For these random circuits, we pick 3/4 of all possible
qubit pairs and each qubit pair requests a random number of
CNOT gates, which is uniformly picked from (1, 100). We
name these circuits rand24 and rand32.

Quantum Clusters. We consider three different QPU clus-
ters with 8 homogeneous GPUs and the QPU in each cluster
has different quantum resources (i.e., different number of
data/computation qubits 𝑚𝑖). We name them small, medium,
large, respectively. We choose similar settings with [17], and
the detail parameters is given by Table III. All QPUs are fully
connected via an underlying QN 𝐺. For simplicity, we set the
link cost 𝑏𝑢,𝑧 for all quantum links in 𝐺 to one unit.

Baseline Methods. We use the following baselines solutions
in our evaluations, which we call TACO methods for Topology-
Allocation Co-Optimization.

• TACO. We manually decompose the terms in the original
formulation of P1 whose degrees are higher than two to
quadratic terms and use Gurobi to solve it.

TABLE III
QUANTUM RESOURCES AND TOPOLOGY SPARSITY REQUIREMENT OF

THREE DIFFERENT QPUS CLUSTERS.

Cluster QPU # Comp. Qubit # 𝑚𝑖 Comm. Qubit # 𝑛𝑖 𝑊

small 8 2 4 8
medium 8 3 4 10

large 8 4 4 12

• TACO-NL. We use the original formulation of P1 and
directly feed it to Gurobi with the newest non-linear ex-
pression feature. Gurobi is responsible for automatically
decomposing all terms to linear.

• TACO-L. We use Gurobi to diectly solve the reformulated
problem of P2, which is partially linearized.

B. Simulation Results

Efficiency - Solving Time. We first compare the efficiency
of the three baselines. We pick adr4, rand24 and rand32 as the
three testing circuits, and the QPU cluster settings are picked
according to the total number of qubits in these circuits. That
is, we use small, medium, and large QPU clusters for adr4,
rand24, and rand32, respectively. The results of performances
are shown in Fig. 4.

First, our partially linearized formulation TACO-L is gen-
erally the most efficient for all three circuits. It not only
finds the solution with much less time for all cases, but also
achieves the smaller objective value (less total communication
cost) in some cases. This means it is suitable to solve the
joint optimization in DQC with larger scales compared with
TACO or TACO-NL. Then, interestingly, TACO-NL, while
uses the newest automatic linearization feature of Gurobi for
high-degree non-linear expressions, cannot beat TACO, which
repeatedly decomposes high degree expressions to quadratic
by adding intermediate variables. This suggests that directly
using the non-linear expression may not be sufficient, and
manually decomposing high degree expressions may still be a
good choice. Note that the lines from some baselines stop early
(such as TACO for rand32 over large) because they cannot find
a better solution in the given time period. Comparing these
three cases, obviously the larger circuit and quantum network
lead to higher communication cost. But TACO-L can always
find a good solution quickly. Therefore, we will only report
its result in the following simulations.

Quantum Resources - Number of Computation Qubits.
We now consider the same circuit on three different clusters
which has different of number of data qubits 𝑚𝑖 per QPU. We
test adr4, clip, and co14 over all small, medium, and large
clusters. We pick those three circuits because they can fit into
all clusters (while rand24 and rand32 cannot fit in small due
to insufficient computation qubit). 𝑊 is now fixed to 8 for all
clusters to keep the graph density factor unchanged. As shown
in Fig. 5, for all three circuits, more quantum resources (larger
𝑚𝑖) always leads to lower communication cost because more
qubits can reside in the same processor so fewer inter-QPU
communications are required.



(a) adr4 over small (b) rand24 over medium (c) rand32 over large

Fig. 4. Objective values of the solutions from three baselines for three circuits over corresponding QPU clusters.

Fig. 5. Objective values of TACO-L for three circuits on all small, medium,
large clusters, with the same 𝑊 = 8.

Fig. 6. Objective values of TACO-L for three circuits with different topology
sparsity requirement 𝑊 (on small, medium, large clusters, respectively).

Topology Sparsity Requirement. We now investigate how
the topology sparsity requirement 𝑊 can affect the total
communication cost (i.e, the objective of our optimization).
From Fig. 6, we can see that for the three testing circuits,
the achieved objective value is always smaller if the network
topology is allowed to be denser. This is because a denser
graph always has shorter point-to-point paths, thus smaller
communication cost. The three circuits are distributed to small,
medium and large clusters, respectively. For each circuit, only
𝑊 varies but other parameters of the cluster keep unchanged.

We also show some examples of resulting topology for
picked real-world circuits and the two random circuits when

we use different 𝑊 . Because all of the real-world circuits
have no more than 16 qubits, so they are all tested on the
small cluster. The random circuits are tested on medium and
large clusters, respectively. We also change the value of 𝑊 to
see how it affects the final network topology. The resulting
topologies are shown in Fig. 7. First, both adr4 and clip
have only 14 qubits so they only use 7 out of 8 available
QPUs for all 𝑊 , while co14 have to use all QPUs to hold
its 15 qubits. Second, it is obvious that when the network is
allowed to be denser, we can have more edges to further reduce
communication cost. Third, all node degree in these topologies
is bounded by 4 which is the number of communication qubits
of each QPU. Last but not least, different circuits have different
communication patterns, so they may have different optimized
topology even running on the same set of QPU clusters.

VI. CONCLUSION

In this paper, we first formulate a tractable integer nonlinear
programming problem for a joint optimization of network
topology and qubit allocation in distributed quantum comput-
ing. This simple formation allows the entanglement paths are
explicitly incorporated into the joint optimization. We then
further convert the original problem into an equivalent but
partially linearized version so that it can be solved more
efficiently by classical optimization solver. Simulations over
both real-world and random quantum circuits confirm that the
partially linearized formulation is more efficient to solve with
reduced total communication costs.

We leave further investigation on 1) testing the proposed
methods on clusters with heterogeneous QPUs, 2) how to
solve the optimization more efficiently than directly using
the solver, and 3) extending the optimization formulation to
consider dynamic quantum network, as possible future works.
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