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Abstract—Satellite-based quantum networks are emerging as
a promising solution for the development of a global quantum
internet in the near future. The ability to leverage the advan-
tageous lower attenuation of optical signals from satellites to
ground presents an exciting opportunity to establish a robust and
secure quantum communication infrastructure on a global scale.
By utilizing a constellation of satellites, it becomes feasible to con-
tinuously distribute high-fidelity quantum entanglements among
ground stations over long distances, overcoming the limitations
of traditional terrestrial-based quantum communication systems.
In this article, we first provide a brief survey of existing solutions
for satellite-based entanglement distribution, highlighting the
various approaches and technologies that have been employed
in this rapidly evolving field. We then delve into a formulated
optimal entanglement distribution problem, aiming to optimize
the distribution of quantum entanglement resources across the
satellite network to maximize efficiency and reliability. This
problem is addressed through a detailed exploration of several
different methodologies and algorithms, each tailored to specific
operational settings and constraints. Our experimental results
confirm the efficiency of these approaches and provide valuable
insights into their practical implementation and performance.
Finally, we identify several key directions for further study and
development in the realm of satellite-based quantum networks.

Index Terms—Entanglement distribution, space-terrestrial net-
works, satellite networks, quantum networks.

I. INTRODUCTION

Quantum networks [1], at the forefront of cutting-edge
quantum technology, represent a new paradigm shift in secure
communication and enable many emerging applications, such
as quantum key distribution (QKD) [2], quantum sensing,
and distributed quantum computing [3]. Quantum networks
rely on the phenomenon of quantum entanglement, where
particles become interconnected in a manner that the state of
one particle instantaneously influences the state of another,
irrespective of their separation distance. Quantum entangle-
ment serves as the foundational cornerstone for all quantum
communication protocols, enabling the establishment of secure
and unforgeable connections between distant parties.

Although quantum entanglement plays a pivotal role in
the functionality of quantum networks, distributing shared
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entanglement over long distances remains a very challenging
task [4]. Typically, shared entanglement is distributed through
single-photonic qubits transmitted via optical fibers. However,
the success probability of transmitting such optical signals
experiences an exponential decline as the distance increases.
To mitigate this challenge, quantum repeater/memory and
entanglement swapping have been introduced [5]–[7]. Unfortu-
nately, there is still a significant gap between the demonstrated
transmission distances and the requirements for realizing a
global-scale quantum network, i.e., quantum internet.

One promising strategy to achieve efficient long-distance
entanglement is through the usage of satellites. By taking
advantage of the reduced signal attenuation in optical com-
munication from satellites to ground stations and the grow-
ing availability of large constellations of orbiting satellites,
satellite-based entanglement distribution emerges as a viable
strategy for continuous and high-quality distribution of quan-
tum entanglements over long distances to enable global-scale
quantum networks. A notable example is the work of Yin et
al. [8], where successful entanglement distribution to receiver
ground stations separated by over 1,200 km was demonstrated
by the Micius satellite in China. Mazzarella et al. [9] have also
shown that a constellation of fifteen low Earth orbit (LEO)
CubeSats can form a quantum backbone for ground-based
quantum networks across the UK. Recently, Gonzalez-Raya
et al. [10] have studied the effects of atmospheric turbulence
on entanglement distribution and quantum teleportation in the
optical regime between a satellite and a ground station.

While the satellite-based entanglement distribution lever-
ages a large constellation of orbiting satellites to generate
and distribute quantum entanglements, a central challenge lies
in the optimal configuration of these satellites to meet the
entanglement demands from multiple ground stations [11].
Such an optimal configuration problem can be formulated
as different optimization problems within the complex space-
terrestrial network consisting of multiple satellites and ground
stations. In this article, we first review the most recent ad-
vancements in this field and then use the optimal entanglement
distribution problem introduced by [12] to illustrate potential
efficient solutions in satellite-based quantum networks.

The optimal entanglement distribution problem maximizes
the aggregate entanglement distribution rate by considering
various resource constraints at both satellites and ground
stations. Although Panigraphy et al. [12] formulated their
problem as an integer linear programming problem, they
efficiently solved it for only two specific scenarios. In this
article, we present a survey of existing satellite-based entangle-
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Fig. 1. The overall satellite-based entanglement distribution architecture.
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Fig. 2. Graph models of satellite-based entanglement distribution in the
network of Figure 1. (a) five demanded GSPs, (b) all possible satellite
distributions for each GSP.

ment distribution solutions, exploring various technologies and
approaches. We then revisited the optimal entanglement distri-
bution problem, aiming to maximize the total weighted utility
across the satellite-terrestrial network. We explore different
methodologies and algorithms tailored to specific operational
settings and constraints, with experimental results confirming
their efficacy. Additionally, we identify key directions for
further study and development in the realm of satellite-based
quantum networks.

II. QUANTUM ENTANGLEMENT DISTRIBUTION

The connection in quantum networks is different from that
in classic networks. In classic networks, data packages are
sent from the source to the destination by copying them at the
intermediate routers. In quantum networks, a pair of entangled
particles is distributed to the source and destination nodes
so that quantum bits/status can be transferred between them.
When two particles are perfectly entangled, they share the
same state no matter the distance between them and thus can
be used for many operations in quantum networks. Such shared
entanglements are the key resource in quantum networks.
However, unlike in classic networks, we cannot simply copy
the state of one particle due to the no-cloning principle of
quantum states.

Entanglement is typically generated and distributed through
a process known as entanglement swapping or by directly
creating entangled particles. Quantum sources, such as those
utilizing spontaneous parametric down-conversion, can be em-
ployed to generate pairs of entangled photons. These photons

can then be sent to different nodes in the network, establishing
entanglement between the nodes. Such entanglements can
be further extended towards a longer path by the quan-
tum swapping operation. Due to the probabilistic success of
entanglement generation and swappings, establishing long-
distance entanglement can incur significant latency. Therefore,
Ghaderibaneh et al. [13] and Pouryousef et al. [14] have
proposed to pre-distribute entangled pairs over certain pairs
of network nodes. By doing so, when needed, entangled pairs
can be generated from these pre-distributed pairs quickly.

In this article, we consider the entanglement distribution
of entangled pairs from satellites equipped with quantum
sources to some pre-determined ground station pairs to support
the global quantum network. There are existing works [5]–
[7] on using quantum swapping and purification to generate
and distribute entanglement along one or multiple paths in a
multi-hop quantum network. Such works are orthogonal to
the pre-distribution of entanglement we consider here, but
complementary and used in conjunction with pre-distribution.

III. SATELLITE-BASED QUANTUM NETWORKS

In satellite-based quantum networks [8]–[11], satellites
equipped with entanglement-generating photon sources can
create pairs of entangled photons and distribute entanglement
between a pair of ground stations, as shown in Figure 1. The
reduced signal attenuation in the near-vacuum of space enables
the entangled photons to travel longer distances without sig-
nificant loss of quantum coherence. We adopt a double down-
link distribution architecture, where satellites and ground sta-
tions act as transmitters and receivers respectively. [11] has
demonstrated that satellite-based entanglement distribution can
achieve a better rate than the pure ground-based solution.

We consider a space-terrestrial network with certain satel-
lites and ground stations, shown in Figure 1. The sets S = {si}
and N = {gk} represent the satellites (SATs) and ground
stations (GSes). We define P = {pj} as the set of demanded
ground station pairs (GSPs) requiring pre-distributed entangled
pairs, as illustrated in Figure 2(a). For example, demanded pair
p2 needs entangled photons for delivery to GS g1 and GS g3.

In this network, an entangled photon can reach GS gk if the
elevation angle θi,k between satellite si and the horizon at gk
exceeds an elevation angle threshold θe. If both GSes of GSP
pj can satisfy the elevation threshold, the fidelity of entangled
photon pair received at pj from si can be approximated by

Fi,j = 1
4

(
1 +

4F 0
i −1

(1+
nj
ηi,j

)2

)
. Here, F 0

i is the initial fidelity

of the entangled photon pair at si, nj is the number of
background photons received by GSP pj , and ηi,j is the space-
to-ground transmittance between SAT si and GSP pj . Based
on [11], [12], the space-to-ground transmittance ηsgi,k between
si and gk consists of two parts: the free-space transmittance
ηfsi,k and the atmospheric transmittance ηatmi,k , defined as below.

ηsgi,k = ηfsi,k · ηatmi,k =
(π(dTi /2)

2)(π(dRk /2)
2)

(λli,k)2
· e−αhi,k . (1)

Note that ηfsi,k depends on the orbital parameters, such as alti-
tude and zenith angle, while ηatmi,k depends on the atmospheric
conditions, e.g., turbulence and weather conditions. Here, li,k
is the distance length between si and gk, hi,k is the distance
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height between gk and atmospheric boundary when connected
to si, and α is the atmospheric extinction coefficient. dTi and
dRk are the diameters of the transmitter and receiver telescopes
at si and gk, respectively. These telescopes operate at a specific
wavelength λ. We assume that ηi,j = ηsgi,k1

= ηsgi,k2
if gk1

and
gk2

are the GSes in GSP pj .

IV. OPTIMAL ENTANGLEMENT DISTRIBUTION PROBLEM

Khatri et al. [11] have first considered a global-scale
quantum network consisting of a constellation of orbiting
satellites that provides a continuous, on-demand entanglement
distribution service to ground stations. Particularly, they aim
to determine optimal satellite configurations with continuous
coverage that balances both the total number of satellites
and entanglement-distribution rates. They propose a greedy
approach to select the satellite assignments to maximize the
achievable entanglement-distribution rates for multiple ground
station pairs and show the advantage over the rates of ground-
based quantum repeater schemes.

Most recently, Panigraphy et al. [12] then further for-
mally defined the optimal entanglement distribution problem
in satellite-based quantum networks, where the entanglement
distribution from a constellation of orbiting satellites is as-
signed to a set of ground station pairs. The optimization goal
of this problem is to maximize the aggregate entanglement
distribution rate subject to various resource constraints at the
satellites and ground stations. They formulated their problem
as an integer linear programming problem but only solved
it efficiently for two specific scenarios (i.e., when Lj = 1,
Rk = 1 and Ti = 1 or when Lj = 1, Rk = |S| and Ti = 1).

We now formally introduce the optimal entanglement distri-
bution problem for a polar satellite constellation. Each satellite
si has an entangled photon source and Ti transmitters to
send entangled photon pairs to multiple GSPs. Each GS gk
has Rk receivers to receive photons and create entanglement
for quantum applications. We assume that there is a set of
GSPs P demanding entanglements. Figure 2(b) shows five
pairs of GSPs and their potential coverage from all SATs.
The optimization problem is to assign satellites to cover
these GSPs. The binary decision variable xi,j indicates if
SAT si provides entanglement for GSP pj , with associated
weight/utility wi,j representing the entanglement generation
rate or arrival rate of requests. The objective is to maximize
the weighted utility, leading to the formulation of the optimal
satellite assignment problem as follows.

max
xi,j

∑
si∈S

∑
pj∈P

wi,jxi,j (2)

s.t.
∑
si∈S

xi,j ≤ Lj , ∀pj ∈ P, (2a)∑
si∈S

∑
pj∈P,gk∈pj

xi,j ≤ Rk, ∀gk ∈ G, (2b)

∑
pj∈P

xi,j ≤ Ti, ∀si ∈ S, (2c)

xi,j = 0, ∀Fi,j < F th
j , si ∈ S, pj ∈ P, (2d)

xi,j ∈ {0, 1}, ∀si ∈ S, pj ∈ P. (2e)

Here, Constraint (2a) ensures that each GSP pj ∈ P can only
connect to Lj satellites simultaneously. Constraint (2b) means
that a GS gk can be part of multiple GSPs and thus is not
allowed to be allocated to more than Rk satellites due to
its limited number of receivers. Constraint (2c) ensures that
SAT si does not get allocated to more than Ti GSPs due
to its limited number of transmitters on board. Constraint
(2d) confirms that the fidelity of entanglement Fi,j after
transmitting is larger than the fidelity threshold F th

j for those
assigned. This also implies that the elevation angle is sufficient
for achieving fidelity.

V. SOLVING THE OPTIMIZATION PROBLEM

We now discuss several ways to solve the defined optimal
entanglement distribution problem.

A. Greedy Heuristics

In [11], Khatri et al. consider the problem when Lj = 1 and
Ti = 1, i.e., each GS can only distribute entanglement to one
GSP, and each GSP can only be assigned one satellite. For
this scenario, they propose a simple greedy algorithm: each
satellite is assigned to the GSP that has the lowest loss among
all GSPs within the visibility of the satellite. In addition, if
a GSP has only one satellite in view, that satellite will be
assigned to this lone GSP. In our formulation, the lowest
loss between a SAT si and a GSP pj corresponds to the
highest fidelity (Fi,j). In other words, we can greedily select
the maximal fidelity of satellite-GSP assignment among all
remaining demanded GSPs and SATs in each step. We call
this method Greedy-Loss. This method selects assignments
with good fidelity but may not maximize the overall utility.
This has been confirmed by [12] in their simulations.

An alternative greedy strategy will be to greedily find an
SAT-GSP assignment with the maximal utility wi,j among all
remaining demanded GSPs and satellites at each step. We call
this method Greedy-Utility. Compared with Greedy-Loss, this
method is more directly to optimize the optimization goal.
However, it still cannot guarantee to find the optimal solution.

Both greedy methods are general enough to be applied in
all possible cases (different values of Ti, Lj , Rk). The running
time is also within polynomial time and is efficient for large-
scale space-terrestrial networks.

B. Maximum Independent Set based Approach

In [12], Panigraphy et al. convert the original optimization
problem when Lj = 1, Rk = 1, and Ti = 1 to a weighted
version of the maximum independent set (MIS) problem,
where each vertex is an assignment of si to pj and an edge
between two vertex exists if the two vertex share a satellite or
a GS. However, MIS is NP-hard for general graphs. Therefore,
they propose an approximation algorithm to solve the problem.
We call such method MIS-Approx, which is only useful for
the special case of the problem with Lj = 1, Rk = 1, and
Ti = 1. Obviously, the approximation algorithm cannot give
the optimal solution even for such a special case.
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Fig. 3. Examples of flow models for maximum flow-based method: Case 1, when Lj = 1, i.e., each GSP can only be served by one satellite; Case 2, when
Rk = |S|, i.e., each GS has sufficient receivers to receive from all satellites.

C. Maximum Bipartite Matching based Approach

Panigraphy et al. [12] model the original optimization
problem when Lj = 1, Rk = |S|, and Ti = 1 as the maximum
weight bipartite matching problem where the SATs and GSPs
are nodes in the bipartite graph. Such a maximum matching
problem can be solved optimally by the Hungarian algorithm
in polynomial time. We call such method Max-Match. For
this case, Rk = |S|, i.e., each GS has a sufficient number of
receivers to receive from all satellites at the same time.

D. Maximum Flow based Approach

We now propose a maximum flow-based method to solve
two more general cases of the optimization problem (beyond
the special cases studied and solved by [12]), as shown in
Figure 3.

Case 1 with Lj = 1: Each GSP can only be served by one
satellite. Note that this case covers both special cases studied
by [12] but is more general. We define a graph model, which
includes all satellites, GSPs, GSs, a virtual source, and a virtual
sink, as shown in Figure 3(a). A link between si and pj with
a unit capacity represents the assignment of that SAT to cover
that GSP. For each GSP pj , there are two outgoing links with
0.5 capacity towards gk1 and gk2 , respectively, who are the
two GSs in pj . There is a link from the source to each SAT
si with the capability of Ti, and there is a link from each
GS gk to the sink with the capability of Rk

2 . Weight wi,j is
given to the link from si to pj , when all other links have
zero weights. The original optimal entanglement distribution
problem now becomes a weighted maximum flow problem
in such a weighted graph. We can use a weighted maximum
flow algorithm to solve it. However, note that this problem is a
little bit different from the traditional maximum flow problem
in a general graph since we request the two outgoing links
from a GSP to be selected or not be selected simultaneously.
Therefore, we have to modify the traditional maximum flow
algorithm to guarantee that during the argument path selection.
A formal proof of such guarantee is left as future work.

Case 2 with Rk = |S|: Each GS has sufficient receivers to
receive from all satellites. This will release the flow constraints
from GSPs to the sink. Therefore, we can simply draw a direct
link from GSP to the sink with a capacity of |S|. On the other
hand, we can allow Li ≥ 1 and Rk ≥ 1 compared with [12].
We duplicate the GSP node of pj for Lj times. An example

of L1 = 2 is given in Figure 3(b). This case can be simply
solved by the classical weighted maximum flow algorithm.

We call this method Max-Flow. We also anticipate this
approach may be extendable to more general cases (such as
general Lj , Ti, and Rk), but we leave it as an open problem
for future works.

E. Linear Programming based Approach

Last but not least, the formulated problem (Equation (2)
is a basic integer linear programming (ILP) problem, thus a
classical LP solver can be used. While linear programming
(LP) is solvable in polynomial time, ILP is NP-hard in
general, which makes it hard to solve efficiently. Fortunately,
as experimental results are shown in Section VI, a classical
LP solver (such as Gurobi) can perform nicely in solving
our optimal entanglement distribution problem in most general
cases. We call this method ILP-Opt.

VI. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of all afore-
mentioned entanglement distribution methods in Section V in
terms of the achieved weighted utility.

Space-terrestrial Network Architecture: Our network ar-
chitecture utilizes a polar satellite constellation, as detailed
in [11], [12], with 10 rings of satellites in polar orbits, each
containing 10 satellites at altitudes ranging from 2, 000 km to
10, 000 km. We focus on scenarios where only a few satellites
are visible to specific ground stations within fixed time win-
dows. Additionally, we designate several long-distance cities
(e.g., New York, London, Rio de Janeiro, Mumbai, Cape
Town, Beijing, Sydney, Singapore, and Vancouver) as GS, with
a total of 36 GSPs, and randomly select a subset of GSPs for
establishing entanglement links. The number of transmitters at
each SAT and the number of receivers at each GS are randomly
chosen from the ranges of 6 to 10 and 2 to 6, respectively.

Space-terrestrial Channel Parameters: We follow [11],
[12] to set all parameters in our space-terrestrial quantum
network. For the loss and noise parameters in photon transmis-
sion from satellites to ground stations, we set the atmospheric
extinction coefficient α at 0.028125 and the wavelength λ at
737 nm. The transmitter telescope diameter at satellites and
the receiver telescope diameter at ground stations are set to
0.2 m and 2 m, respectively. The elevation angle threshold θe
for any satellite and GSP is set to 20° based on [8].
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Fig. 4. Simulation results for different cases: (a) Case A, Lj = 1, Rk = 1, Ti = 1; (b) Case B, Lj = 1, Rk = |S|, Ti = 1; (c) Case C, Lj ≥ 1, Rk =
|S|, Ti ≥ 1; (d) Case D, Lj ≥ 1, Rk ≥ 1, Ti ≥ 1.

We test all entanglement distribution methods under various
cases (different ranges of Lj , Rk, Ti) in 12 different network
settings. Figure 4 shows the results. Each of the plots arranges
the network settings in ascending order based on the number of
satellites and GS used. The smallest scale setting, for instance,
has 13 satellites and 5 GSs. The largest scale setting involves
48 satellites and 9 GSs.

A. Case A: Lj = 1, Rk = 1, Ti = 1

This is the first case study in [12]. We compare the
performances of Greedy-Loss [11], MIS-Approx [12] and ILP-
Opt, and the results are reported in Figure 4(a). Obviously,
ILP-Opt outperforms MIS-Approx and Greedy-Loss across all
experimental settings, producing the highest total utility. Recall
that Greedy-Loss more focuses on fidelity while MIS-Approx
is only an approximation algorithm.

B. Case B:Lj = 1, Rk = |S|, Ti = 1

This is the second case studied in [12]. Figure 4(b) shows
the performances of Greedy-Loss [11], Max-Match [12] and
ILP-Opt. For this case, both ILP-Opt and Max-Match can solve
the problem optimally, while Greedy-Loss still suffers.

C. Case C: Lj ≥ 1, Rk = |S|, Ti ≥ 1

This is a more general case than Case B, since it allows Lj

and Ti to be larger than 1. Figure 4(c) shows both ILP-Opt
and Max-Flow can solve the optimization problem optimally.

D. Case D: Lj ≥ 1, Rk ≥ 1, Ti ≥ 1

Last is the most general case. Figure 4(d) confirms that
(1) ILP-Opt can solve the optimization problem optimally in
this general case; (2) Greedy-Utility outperforms Greedy-Loss
since it more directly optimize the objective of utility.

E. Computation Time

Table I demonstrates the average computation time of
different algorithms for 12 network settings in different cases.
Greedy-Loss achieves the lowest computation time in all cases
but with worse utility. ILP-Opt gains the best utility with
acceptable computation time. In summary, ILP-Opt can solve
the problem in all cases very efficiently, due to relevantly small
scales. If the scale of the problem is too large to prevent
the usage of ILP-Opt, Max-Match, Max-Flow and Greedy-
Utility could be a good alternative solution for Case B, Case C
and Case D, respectively. There is always a trade-off between
performance and time complexity.

TABLE I
AVERAGE COMPUTATION TIME COMPARISON.

Algorithms Avg. Computation Time (ms)
Case A Case B Case C Case D

ILP-Opt 0.801 0.733 1.202 1.253
MIS-Approx 40.698 / / /
Max-Match / 0.477 / /
Max-Flow / / 1.435 /

Greedy-Utility / / / 0.399
Greedy-Loss 0.133 0.198 0.466 0.367

VII. OPPORTUNITIES AND CHALLENGES

While we have demonstrated ILP-Opt can solve the opti-
mization problem relevantly easily, there are still some unan-
swered questions regarding the satellite-based entanglement
distribution and many potential extensions to more challenging
problems.

Polynomial Solution for All Cases or NP-Hardness:
We need to explore the NP-hardness of these optimization
problems in Cases A and D and investigate if polynomial
algorithms exist for these problems.

Fidelity Consideration, Quantum Swapping, and Pu-
rification: In the mathematical formulation in this paper,
the assumption is the entanglement can be generated and
distributed as long as the elevation angle and fidelity satisfy the
thresholds. However, if we integrate fidelity into the optimiza-
tion objective function, the new optimization problem becomes
more complex. In addition, if we allow the GSP to perform
quantum swapping and/or purification, then we can satisfy
or cover more GSPs. However, solving such optimization
problems will become more challenging.

Quantum Memory and Entanglement Allocation: In the
formulated problem, we only consider a unit of entangled
pairs is needed for each GSP. However, if both SAT and
GS are equipped with quantum memory and can hold more
entanglement, then the optimization problem can include new
constraints on quantum memory and also introduce new de-
cision variables such as assigned entanglement number or
rate for each assignment. Then, this problem will have more
nonlinear constraints/objectives and become a mixed integer
nonlinear programming model. It is more difficult to design
algorithms for such a problem. Possible solutions include
hybrid quantum-classical approaches [15].

Multi-Partite Entanglement Distribution: Here we only
consider distributing bipartite entanglement to two GSes. If
we take the most recent multi-partite entanglement into con-
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sideration, the entanglement distribution could be performed
among multiple sets of GSes.

Dynamic Satellite-Ground Channels, Satellite Mobil-
ity, Satellite Constellation: In current studies, we treat the
locations of satellites to be static during the entanglement
distribution. However, it will be interesting to see how the
dynamic channels and satellite mobility affect the distribution.
In addition, we may investigate entanglement distribution
within different types of satellite constellations or with the
help of the intermediate stations. Note here we only distribute
the entanglement via a direct downlink from SAT to GS.

VIII. CONCLUSION

This article provided a concise overview of recent studies
concerning the optimal entanglement distribution problems in
satellite-based quantum networks. We revisited the specific
optimization problem introduced by [12] and presented var-
ious potential methods to address the problem under various
scenarios. Notably, we introduced a new maximum flow-based
approach and an ILP-based approach, demonstrating not only
broader applicability but also superior performance compared
to existing methods, as confirmed by experimental results.
Furthermore, we discussed future opportunities and challenges
in this area. We believe that while satellite-based entanglement
distribution offers tremendous opportunities for realizing a
global-scale quantum network, it also poses substantial re-
search challenges in designing efficient optimal entanglement
distribution algorithms for various scenarios. For example,
the optimal entanglement distribution in a more complex and
dynamic space-terrestrial integrated quantum network whose
entities are from different organizations becomes much more
challenging, and may require additional advanced techniques,
such as deep reinforcement learning or game theoretical ap-
proaches, to tackle.
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