
Topology Design with Resource Allocation and
Entanglement Distribution for Quantum Networks

Abstract—Topology is one of the most critical properties of
networks. Quantum networks, as a new type of network, have
fundamentally different principles for establishing connections
compared to classical networks, leading to distinct challenges
in topology design. Finding the optimal topology for quantum
networks to meet traffic demands is a crucial yet not fully
understood problem. In this paper, we explore the topology design
problem for quantum networks, considering both resource allo-
cation and entanglement distribution. We propose and investigate
both flow-based and path-based formulations, along with their
associated solutions, aimed at minimizing the topology cost. For
the path-based formulation, we also provide the first theoretical
analysis of the cost associated with swapping strategies over
a quantum path. Extensive simulations demonstrate that our
enhanced path-based formulation is both efficient and effective.

I. INTRODUCTION

While quantum networks [1], [2] enable many reforming
applications and are hence in active development in many
countries, we still know little about its design principles at
the network scale. Experimental quantum networks typically
consist of only a few quantum links, which do not require a
careful network-wide design. On the other hand, we foresee
that in the near future, quantum networks at larger scales,
such as the global quantum internet, will be of great interest.
Topology, perhaps the most critical factor in network design
[3]–[6], should also be of great importance to these networks.
While there have already been many works on connection
establishment (i.e., entanglement distribution) for quantum
networks with given topology, few researchers consider how
we design such topology.

Topology design for quantum networks is different from that
of classic networks: they have fundamentally different logic
for establishing connections (i.e., quantum entanglements).
In classic networks, connections are basically virtual tunnels
where hosts can exchange data packages. The packages are
sent into the network and transmitted to routers/switches. In
quantum networks, such a strategy is impossible: the no-
cloning principle in quantum mechanics prevents from per-
fectly copying quantum status. Instead of pushing quantum
status through the network, entanglements are created between
two nodes (or among multiple nodes). These entanglements
can be consumed by teleportation to transmit quantum status,
and thus are the key resource in quantum networks [7], [8].

Usually, entanglements are first generated over short quan-
tum links and then connected to form long-distance ones
via quantum swapping. We cannot establish long-distance
entanglements directly because photons (the matter mostly
used to carry quantum information) suffer exponential loss
in fibers. To overcome this, multiple auxiliary techniques can
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Fig. 1: Topology design problem in quantum networks. (a) A
topology G(V,E) shows all possible quantum repeaters/links;
(b) and (c) are two different TD solutions, both can serve the
two traffic demands while using different quantum resources.

be adopted. The simplest one is to shorten the link length,
e.g., put intermediate quantum repeaters (similar to the routers
in classic networks) to segment long links (so shorter sub-
links and higher photon survival rate). The second one is
to deploy multiple channels on one link so these channels
can generate entanglements simultaneously, resulting in a
higher link-level entanglement rate. The last but not the least,
repeaters are equipped with quantum memory so asynchronous
swappings are enabled. Without quantum memory, we can
perform swapping to connect two adjacent entanglements only
when both two sides establishes one entanglement successfully
at the same time. Since when the photons arrive, we either
process them immediately, or they get lost as we cannot store
them. This is obviously unfavorable to a higher E2E entangle-
ment rate. Therefore, we can use quantum memory to ‘store’
photons: they are absorbed by atoms and the information they
carry is stored. When we need to perform swapping, we can
read that information out.

These techniques reveal two important device resources of
quantum networks: quantum channels and quantum memory.
In the topology design (TD) problem of quantum networks,
we focus on optimizing these resources needed to construct a
quantum network for specific traffic demands. For example,
in Fig. 1, to fulfill a traffic demand between the source-
destination (SD) pair A and F (denoted as A:F), entanglements
over two different quantum paths can be used, i.e., the blue
path (A ↔ D ↔ F) and the purple path (A ↔ C ↔ E
↔ F). The blue path is shorter (in terms of hops), which
implies that less memory is needed to establish one single
E2E entanglement for A:F. On the other hand, links A ↔
D and D ↔ F can be longer than the links in the purple



path, which means they are weaker in entanglement generation
so more quantum channels (higher cost) may be required to
achieve the same capacity. Therefore, there are clear memory-
channel trade-offs in topology design. In addition, when we
also need a green path (B ↔ C ↔ D) for pair B:D, if we
select the blue path (rather than purple path) for A:F, then
node E and its adjacent links (i.e., E ↔ C, E ↔ D, and E ↔
F) can be removed to save resource/cost. It is clear that, for the
same demands (e.g., one entanglement for each of pair A:F
and B:D), different TD decisions (e.g., blue path + green path
(Solution 1 in Fig. 1b) v.s. purple path + green path (Solution 2
in Fig. 1c)) have different cost. When the network is large
and there are many demanding pairs, it is challenging to find
the topology with the optimal cost. Therefore, the optimal
topology design is critical for large-scale quantum networks.

In this paper, we first formulate a topology design prob-
lem (TDP) based on two popular entanglement distribution
formulations: flow-based and path-based formulations. The
flow-based one (F-TDP), if optimally solved, gives the optimal
result of the TDP. However, the complexity of F-TDP makes
it challenging to solve for larger and denser networks. The
path-based formulation (P-TDP), on the other hand, restricts
the entanglement flow over pre-defined paths, thus can be
solved more efficiently but with a certain loss on the opti-
mality. To obtain an efficient and effective solution over pre-
defined paths, we dive deep into the path-level entanglement
distribution and are able to find the optimal path-level solution.
Then, once equipped with our optimal path-level solution,
the path-based formulation can give similar results to the
flow-based one, and remains to be efficient. Lastly, we also
propose a greedy algorithm, which is guaranteed to terminate
in polynomial time. Overall, our contributions in this paper
can be summarized as:

• We investigate the TDP for quantum networks with two
formulations (F-TDP and P-TDP), which led to two
different TD solutions. In addition, a greedy method is
proposed for P-TDP.

• To enhance the P-TDP, we provide a formal analysis of
the path-level entanglement distribution. We prove the
swapping strategy based on a relaxed complete swapping
tree can lead to the optimal expected cost, while the cur-
rent dominating swapping strategy (sequential swapping)
leads to the worst cost. To the best of our knowledge, this
is the first theoretical analysis of the cost of swapping
strategies on repeater chains (in time slot modeling).

• Extensive experiments are conducted to confirm that the
path-based solution with our optimal path-level entangle-
ment is efficient and loses only marginal optimality. In
addition, the impact of key factors on topology design is
explored, such as segmentation length, device price ratio,
demand intensity, etc.

II. RELATED WORKS

Entanglement Distribution: Entanglement distribution is
the core function of quantum networks, thus has been well-
studied most recently. The current methods can be categorized
into two groups: flow-based and path-based.

The flow-based formulation, initially proposed by ORED
[9], uses three-tuples of edges (or node pairs) to describe all
possible swappings in the whole network and formulate the
distribution problem as a flow-based optimization to maxi-
mize the entanglement throughput. Follow-up works (such as
FENDI [10] and ESDI [11]) further improve ORED in terms of
latency and/or fidelity. Our formulation in Section IV follows
this group but additionally considers resources.

Rather than considering all possible swappings, path-based
formulation confines the distribution within paths: each SD
pair has multiple candidate paths, which are pre-solved (for
their distribution strategy), then the path selection is performed
at the network scale. The dominant path-level solution typ-
ically employs sequential swapping. Farahbakhsh and Feng
[12] design an opportunistic routing method to reduce delay.
Zeng et al. [13] propose a routing algorithm (with predeter-
mined paths) for network throughput maximization. Yang et
al. [14] develop an online entanglement routing scheme to
suffice real-time requests. Zhao et al. [15] and Li et al. [16]
also integrate purification to improve end-to-end connection
quality. We consider a path-based formulation in Section V.

Quantum Network Planning: While topology design is
a relatively new topic in quantum networks, there are a few
pioneer works on quantum network planning, though in a
limited range. Yu et al. [17] explore the network perfor-
mance with simple/random topologies, such as chain, ring,
and random graphs of specific patterns. Pouryousef et al.
[18] proposes a formulation where repeaters can be placed
at pre-defined positions (typically along the lines between two
existing pairs) to maximize the network utility. Chehimi et
al. [19] explore the scaling problem of quantum networks
due to many factors, including noise and fidelity decay. Our
formulations are different from one or more of them in the
following aspects: i) we use a time-slot-based model [15],
[16], [20]; ii) we allow flexible resource allocation for both
quantum channels and memory, instead of only repeaters; iii)
we allow arbitrary swapping order (and find the optimal one),
instead of only using the simplest sequential one.

Analysis on Quantum Repeater Chains: Theoretical anal-
ysis of the entanglement distribution rate of the whole network
is still an open problem, while most existing works obtain
the expected network-wide rate by solving an optimization
problem [9], [15]. Most analysis works focused on the path-
level (i.e., repeater chains) throughput, such as [18], [21]. A
few works aim to obtain the optimal strategy for other metrics,
such as latency [22], [23]. However, again, their analysis is
typically one-shot based and/or only applies to sequential
swapping. Our optimal path-level analysis in Section VI,
rather, is time-slot based, allows arbitrary swapping orders
(and finds the optimal one).

III. PRELIMINARIES AND MODELING
A. Network Model

As shown in Fig. 1, quantum networks include both quan-
tum nodes and quantum links/channels.

Quantum Nodes: Each node v is a quantum repeater
equipped with sufficient identical swapping gates and a quan-
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Fig. 2: Illustration of swapping flow at node v for entangle-
ments between i and j.

tum memory with mv memory slots. mv is a decision variable
for our topology optimization. Here, sufficient gates mean that
we can conduct as many swappings as we want in a certain
time period. Actually, at most ⌈mv

2 ⌉ swapping gates are needed
to process all mv qubits stored in the memory at once. Gate
reuse rate depends on the specific implementations. Here we
assume that the gate number is proportional to the memory
slots so the gate cost can be merged into memory cost. The
success probability of swapping at v is qv , and qv ∈ [0.5, 1]1.
Each node costs γ0

v to be installed (when mv > 0) and each
memory slot on node v costs γv . Therefore, the cost of node
v used by the topology is bv = γvmv + Ivγ0

v where Iv = 1 if
mv > 0, otherwise 0.

Quantum Links/Channels: Each edge e in the network
connects two end nodes with ce optical channels with length
of le. Here, ce is another decision variable for our topology
optimization. Each optical channel includes optical fibers, pho-
ton sources, and detectors. It can generate ke entanglements in
the given time interval2. Therefore, edge e is able to generate
kece entanglements in one time slot. This basically means that
we can obtain higher EGR over an edge by deploying multiple
channels at a higher cost, e.g., using multi-core fibers (together
with more powerful optics). Similarly, we assume that each
edge costs γ0

e to initialize if ce > 0 and each channel on the
edge costs γele, leading to γelece for all channels of edge
e. Here the γe is the per-kilometer price for one channel.
Therefore, the total cost of edge e is be = γelece + Ieγ0

e ,
where Ie = 1 if ce > 0, otherwise 0.

Quantum Network: A quantum network can be modeled
as a graph G = (V,E) with all quantum nodes V and
all possible quantum links E among V . This graph with
the properties of its nodes/edges (such as location, swapping

1To perform swapping, we need to use Bell State Measurement (BSM),
which typically includes one controlled-NOT (CNOT) gate plus classic
communications. Linear optical BSM is efficient, but can only distinguish
2 out of the 4 Bell states, which theoretically limits its success probability to
up to 50%. Higher rates (e.g., 62.5% [24], 75% [25]) are possible by further
improvements. Deterministic BSM gates [26], however, usually do not fail,
so they do not have such theoretical upper bounds of success probability. Of
course, they are still inevitably affected by noise.

2The surviving probability of a photon after traveling through the optical
fiber is pe = 10−

1
10

αle , where α is the loss constant of the fiber. The
surviving probability drops drastically (exponentially) as the length increases.
This is the reason why we need intermediate nodes (repeaters) to establish
long-distance entanglements. Besides, each channel is equipped with a light
source, which can emit ne photons at a specific frequency/wavelength in one
time slot. Thus, the number of entanglements generated by one single channel
in expectation is ke = nepe.

success probability, price of nodes, and length, ne, price of
edges) are known, and thus are the inputs of our TDP.

Quantum Users: We assume that users (applications) sit at
quantum nodes and demand a certain number of entanglements
between certain SD pairs. We use D = {di,j |∀i, j ∈ V } to
represent all user demands, where di,j is the demand between
nodes i and j.

B. Problem Formulation
The goal of our topology design problem is to find a network

topology (by choosing certain nodes and edges from the initial
quantum network and assigning sufficient resources (such as
memory slots and channels) to these nodes/edges to serve the
user demands (i.e. entanglements between SD pairs) while
minimizing the cost of such topology. Such an optimization
problem is challenging since not only the resulting topology
and allocated resources need to be jointly considered but also
the entanglement distribution (or swapping scheduling) among
these selected nodes need to be determined and optimized to
fulfill the user demands.

Entanglement Distribution Scheduling: A scheduling
strategy FV describes swapping operations on each node
v ∈ V . In other words, FV describes which entanglement
is consumed by swapping operations to generate which en-
tanglement. While there are different modeling methods in
different formulations, we use the notation introduced by [9]
to describe the swappings because it is general enough in our
considerations. For an swapping operation on node v as shown
in Fig. 2, f i:v

i:j and fv:j
i:j define the number of entanglements

between node pair (i, v) and (v, j) consumed to generate the
entanglements between (i, j). A complete scheduling strategy
FV contains all possible three-tuples (i.e., ∀(i, v, j) ∈ V ),
although many of them could be 0. For example, for path-
based scheduling, if i, v, j is not on the same path, then we
always have f i:v

i:j = fv:j
i:j = 0.

The formal definition of Topology Design Problem (TDP)
can then be defined as: given the quantum network and user
demands, we need to make the topology, resource allocation
and entanglement scheduling decisions to fulfill the demands
with minimal cost. We use MV , CE , and FV to represent
the sets of memory, channel and swapping decisions, respec-
tively. Note that if the memory/channel is selected as 0, that
node/edge is not included in the final topology. We also use
PG to represent the total cost of the final topology, which is
the summation of all costs at selected nodes and edges in the
topology.

Problem 1: Topology Design Problem (TDP). Given a
quantum network G(V,E) and user demands D, find the
optimal MV , CE and FV , such that i) all user demands are
satisfied, and ii) the total cost PG is minimized.

In the next two sections, we introduce two different sets
of methods to solve the TDP or its variations: a ‘flow’-
based methods and path-selection based methods. They have
different complexities and loss of optimality, but we will see
that the path-selection based solution is efficient and close to
optimal solution if properly designed.



IV. FLOW FORMULATION AND SOLUTION

We first introduce the flow-based formulation of TDP (F-
TDP). The entanglement distribution part of this formulation is
incorporated from ORED [9], which is also the foundation of
several existing works, such as FENDI [10] and ESDI [11].
In [9], this formulation solves the entanglement distribution
problem alone: there is almost no resource consideration (node
memory and channel/edge capacity). It simply uses the edge
entanglement generation probability pe to control the available
entanglements in the whole network. To make it suitable for a
TDP formulation, we add the resource-related constraints and
replace the objective with the total cost. This new formulation
of F-TDP is able to jointly optimize topology, resource and
entanglement distribution all together.

F-TDP : min
m,c,ϕ,f

∑
v∈V

bv +
∑
e∈E

be (1)

s.t. entanglement distribution constraints

I(i, j) ≤ ϕij +
∑

v∈V \{i,j}

qv
2
(f i:v

i:j + fv:j
i:j ),∀i, j ∈ V

(2)

O(i, j) =
∑

v∈V \{i,j}

(f i:j
i:v + f i:j

v:j), ∀i, j ∈ V (3)

f i:v
i:j = fv:j

i:j , ∀i, j, v ∈ V (4)

I(i, j)−O(i, j) ≥ di,j , ∀i, j ∈ V (5)
resource constraints∑
e=(v,v′)∈E

ϕe ≤ mv, ∀v ∈ V (6)

ϕe ≤ kece, ∀e ∈ E (7)
decision variables

mv, ce ∈ Z+
0 , ϕe, f

i,v
i,j , f

v,j
i,j ∈ R+

0 (8)

The objective (1) is to minimize the total cost of the final
topology, which can be written as

∑
v∈V bv +

∑
e∈E be. The

decision variables (8) are (i) the memory size mv at node
v, (ii) the number of channels ce on edge e, (iii) the actual
entanglements used ϕe at e, and (iv) the number of used
entanglements f i,v

i,j and fv,j
i,j between node pair (i, v) and

(v, j) to generate the entanglements between i and j. Note
that we introduce ϕe to denote the expected number of used
entanglements to save the memory. While edge e can generate
kece entanglements, we may only need part of them. For
example, when ke = 5 and we need 7 entanglements, we
can set ce = 2 to get up to 10 entanglements on this edge.
However, if we store all of them, we need 10 memory slots
on each end node of this edge. On the other hand, we can
simply discard 3 surplus entanglements and keep only 7 in
the memory on each end node. In this way, we can save 3
memory slots at each end node.

The entanglement distribution constraints (2)-(5) are similar
constraints adopted from ORED [9] (except ϕ). Constraints (2)
and (3) define the in-flow and out-flow between every node
pair (i, j): in-flow I(i, j) is the sum of the number of directly
generated entanglements ϕij (when there is an edge between

the pair) and the number of entanglements obtained from
swappings; out-flow O(i, j) is the number of entanglements
used by swappings to generate other entanglements. Fig. 2
shows an example of a swapping happens on node v that
generates entanglements between nodes i and j. f i:v

i:j and fv:i
i:j

are the contributions of entanglements between nodes i : v and
nodes v : j, which are used to generate i : j. The coefficient
qv
2 follows that the swapping takes two entanglements as input

but generates one entanglement as output, and the swapping
succeeds with probability qv (so the flow variable f is the
expected value). Constraint (4) requires that when node v
performs a swapping to generate entanglements between pair
(i, j), an equal number of entanglements from (i, v) and
(v, j) should be used. Constraint (5) makes sure enough
entanglements are left for the pairs demanding entanglements.
For more details and explanations of these constraints, we
refer readers to [9], [10]. Constraints (6) and (7) are resource
constraints. Constraint (6) ensures that the memory usage of
all entanglement generation (ϕe) at node v does not exceed
the device capability (mv). Constraint (7) makes sure that the
entanglement consumed at edge e does not exceed the edge
capability. Note that swappings do not introduce new memory
costs because they are in place: they update the entanglement
relations among qubits but do not generate/require new qubits.
Therefore, all memory cost comes from entanglement gener-
ation (to store the link-level entanglements).

This formulated optimization problem F-TDP, if optimally
solved, gives us the optimal solution to TDP. On the other
hand, it is a Mixed Integer Linear Programming (MILP) prob-
lem, which is challenging to solve. The number of decision
variables includes O(|V |) mv , O(|E|) ce, O(|E|) ϕe, and
O(|V |3) of f i,v

i,j . When the network is large and dense, directly
solving this MILP may become very challenging. Thus, we
also explore the path-selection based formation and solution.

V. PATH SELECTION FORMULATION AND SOLUTIONS

In this section, we first explore a new formulation of TDP
by restricting the entanglement scheduling on pre-defined
candidate paths, then propose a greedy path selection method.
In Section VI, we will discuss how to find the optimal
entanglement along a pre-defined candidate path.
A. Path Selection based TDP

Now, we consider a new formulation of TDP, a path-
selection based TDP (P-TDP). Path-based formulations are
used by most works on entanglement distribution (not includ-
ing topology and resource), such as routing [15] and utility
maximization [18]. Unlike the flow-based formulation, path-
based formulation restricts the entanglement scheduling strat-
egy to path selection. In other words, pre-defined candidate
paths are given for each source-destination pair, and these
paths are solved (find FV for those paths) in advance (later
in Section VI we will provide our analysis and algorithm
to determine the optimal entanglement distribution along the
path). Therefore, at the network scale, only path selection is
required to fulfill user demands and satisfy network resource
constraints.



The following P-TDP formulation is basically a path selec-
tion problem constrained by available resources in the network
which aims to minimize the total resource cost.

P-TDP : min
m,c,ϕ,x

∑
v∈V

pv +
∑
e∈E

pe (9)

s.t. entanglement distribution constraints∑
p∈Pi,j

xi,j,p ≥ di,j , ∀i, j ∈ V (10)

resource constraints∑
i,j∈V,p∈Pi,j ,e∈p

αi,j,p,exi,j,p ≤ ϕe ∀e ∈ E (11)

(6), (7)

decision variables

mv, ce, xi,j,p ∈ Z+
0 , ϕe ∈ R+

0 (12)

Constraint (10) makes sure that each node pair obtains enough
entanglements for their demand. In Constraint (11), αi,j,p,e is
the number of entanglements used on edge e by the path p for
unit entanglement between source-destination pair (i, j). So,
this constraint ensures that the total entanglements consumed
by all paths do not exceed the generated entanglements on
this edge. Here, αi,j,p,e is not a decision variable, instead,
it represents the path-level entanglement solution to the pre-
determined path, which is an input for P-TDP. Constraints (6)
and (7), similar to those in F-TDP, limit the used memory and
entanglements on edge not to exceed available resources.

It is easy to see that this type of method reduces the
complexity of the TDP problem significantly. While F-TDP
has to consider all three-tuple of flows (O(|V |3) in total), a
path-level solution only involves O(L) nodes so only needs
at most O(L3) time to solve each path, where L is the path
length. In the next section, we will see that O(L) (rather than
O(L3)) is sufficient to generate the path-level entanglement
solution for one path. Therefore, we can use O(δkL) time
to obtain solutions to all paths, where δ is the number of
demanded user pairs and k is the number of candidate paths
between each user pair. Finally, the P-TDP is an MILP, we
only have O(δk) xi,j,p (other decision variables are the same
as F-TDP’s). The MILP is greatly simplified when k and δ are
constants. That is, the number of decision variables is reduced
from O(|V |3 + |E|) to O(|V |+ |E|).

Now P-TDP is straightforward as a resource allocation
problem. However, there are still two key problems: (1) the
path-level entanglement solution is critical to the final result,
but it is unclear what is the optimal path-level solution; (2)
even given the optimal path-level solutions, what is the loss
of optimality (compared to the flow-based solution)? For the
first problem, we prove Theorem 1 in Section VI to find the
optimal path-level solution. For the second problem, we show
in evaluations that the optimality loss is limited. In addition,
compared to the path-based solution with ordinary sequential
swapping, our optimal path solution significantly improves the
network throughput. Our experiments later also confirm that

Algorithm 1 P-TDP-GREEDY

Input: network G(V,E), demands D, and path number k.
Output: MV , CE , FV .

1: Find all candidate paths P , where Pi,j includes k paths
for each di,j ∈ D

2: Solve path-level solutions for each candidate path in P
3: MV , CE , FV = ∅
4: while max(di,j ∈ D) > 0 do
5: Pick di,j ∈ D, where di,j > 0
6: Find best p by trying bp,mv, ce, fv = ESTIMATE-

COST(p) for all p ∈ Pi,j

7: Update Mv, CE , FV with mv, ce, fv
8: di,j = di,j − 1

9: return MV , CE , FV

without our optimal path-level solution, the objective value of
P-TDP is obviously worse than F-TDP’s.

B. Greedy Path Selection Solution

With the P-TDP formulation, the original TDP can be
solved more efficiently via existing linear solvers than F-TDP.
However, P-TDP is still a MIP which can be challenging to
solve in the worst case, especially with large-scale networks.
Therefore, we also consider a greedy heuristic with polynomial
time in this section.

Compared to P-TDP, which globally optimizes the path
selection, the greedy method (Algorithm 1) uses a greedy strat-
egy to select one path at each time, until all user demands are
satisfied. It works as follows: i) select an unsatisfied demand
(Line 5), and try to prepare one entanglement for this user
pair for each candidate path; ii) among all paths for this pair,
select the one that increases the least cost of the whole network
(Line 6); iii) add necessary resources to MV and CE to enable
this path, and add its path-level solution to FV (Line 7).
ESTIMATE-COST(p, d) (Line 6) returns bp,mv, ce, fv , where
bp is the cost change of the whole network by creating a new
entanglement via path-level solution p, mv and ce are the new
resources needed, and fv is the swapping strategies for all
nodes on the path. The candidate path set P (Line 1), in our
implementation, for each SD pair, includes k shortest paths
given by Yen’s algorithm [27].

VI. OPTIMAL SWAPPINGS ALONG PRE-DEFINED PATH

In this section, we present our analysis of the path-level
entanglement over a fixed path via swapping.
A. Definitions and Main Theorems

We first introduce a few tree definitions used in our analysis.
A Swapping Tree (ST) is a binary tree defined over a path

that i) is a full binary tree, and ii) its leaves are properly
ordered. As shown in Fig. 3a, an ST must be a full binary
tree because all swappings must have two entanglements as
input. An obvious by-product of this property is that there are
always at least two leaves as siblings in the deepest layer. This
property is useful in later proofs. Properly ordered leaves are
those whose order in the in-order traversal of the tree (not



(a) ST (b) SST (c) CST

Fig. 3: Examples of swapping tree (ST), sequential swapping
tree (SST) and complete swapping tree (CST) with five leaves
(i.e., five edges on the quantum path). Here, a node marked
with S is the swapping operation node.

including internal nodes) is the same as they are in the path.
This property ensures that only adjacent entanglements are fed
to swappings.

A Sequential Swapping Tree (SST) is an ST where the
right child of any internal node is always a leaf. SST depicts
the sequential swapping strategy over a path, as in Fig. 3b.
SST is the highest tree among all trees with the same leaves.

A Complete Swapping Tree (CST) is an ST that is also
a complete binary tree. Note that Fig. 3a is not a CST as its
nodes 2 and 3 are not placed leftmost, while Fig. 3c is. CST
has the smallest height (among all trees with the same leaves).

A Relaxed Complete Swapping Tree (RCST) is an ST
whose all leaves are either in the last or penultimate layer.
RCST is named as such because it is similar to CST, except
that the nodes in the last layer are not required to be placed
the leftmost. Thus, RCST has the same height as CST’s. For
example, Fig. 3a and the two trees in Fig. 4 are all RCST, but
none is CST.

Now we present our conclusions of analysis on the optimal
path-level entanglement in terms of its expected cost.

Theorem 1: To establish one E2E entanglement along path
e1, e2, ..., en, the least number of consumed entanglements in
expectation is given by an RCST at Rn = 1

qd
(2n − 2d) +

1
qd−1 (2

d − n), where d = ⌈log2 n⌉.
Theorem 2: To establish one E2E entanglement along path

e1, e2, ..., en, sequential swapping (i.e. by an SST) costs the
largest number of consumed entanglements in expectation
among all swapping strategies, which is Sn = 1

qd
+
∑d

i=1
1
qi .

B. Two Lemmas on Swapping Tree
Lemma 1: The total resource (entanglement) cost of an n-

leaves ST over path p = {e1, e2, ..., en} is Tn =
∑

e
1

qde

where q is the swapping success probability and de is the
depth of edge e in the ST.

Proof: We know that for any node A with subtrees B
and C as its children in an ST, the cost of A in expectation
is rA = rB+rC

q where rB /rC is the expected cost of subtrees
B/C. It is straightforward to see that the cost of a parent node
is the sum of its two children as the two input entanglements
are consumed in a swapping. Besides, the swapping may fail,
so the expected cost is divided by the successful rate. The
cost of the whole ST (at the root node) can be recursively
calculated as such. Resolving the root cost, we can see that
each node contributes to the root cost by dividing q each time
it participates in a swapping, i.e., Tn =

∑
e

1
qde

. For example,

(a) Before (b) After

Fig. 4: Adding a new leaf to an ST as node 2’ sibling. (a)
before adding the node, (b) after adding the node.

in Fig. 3a, Tn =
r1+

r2+r3
q

q +
r4+r5

q

q = r1
q2 + r2

q3 + r3
q3 + r4

q2 + r5
q2 .

Lemma 2: When adding a sibling to a leaf at the d’th layer
of an ST Tn with n leaves, its cost change is δd = − 1

qd
+ 2

qd+1 ;
when removing a leaf (whose sibling is also a leaf) at the d’th
layer of Tn, its cost change is −δd−1 = 1

qd−1 − 2
qd

.
Proof: Take Fig. 4 as an example. By adding a sibling to

node 2 in this tree T5 in Fig. 4a, we create a new swapping
node whose children are node 2 and the newly added node
in the tree T6 in Fig. 4b. Note that the node labels in T6 are
updated as there are more nodes after this addition. Compared
to Tn, Tn+1 no longer has the deleted node, whose cost is
− 1

qd
, but has two more nodes in the next layer, each of whose

cost is 1
qd+1 . Thus, the cost change is − 1

qd
+ 2

qd+1 .
Conversely, when removing a leaf (whose sibling is also a

leaf) at the d+ 1’th (not d’th), the cost change is −δd; when
removing a node at the d’th layer, the cost change is −δd−1.
A corner case is where Tn is a perfect binary tree, so adding
a leaf increases the height of the whole tree by 1. However,
one can easily verify that the lemma is still true as the depths
d and d+ 1 remain the same for the affected nodes.
C. Proof of Theorem 1

We prove Theorem 1 in two steps. First, we prove that
the cost of an RCST with n leaves is Rn = 1

qd
(2n − 2d) +

1
qd−1 (2

d − n). Then, we prove that this is optimal among all
possible swapping trees.

First, an RCST has the same cost as the CST’s because they
have the same number of leaves in the same layer. In other
words, RCST and CST always have the same cost, due to the
same calculation via Lemma 1. Specifically, we know that the
numbers of leaves in the last and second last layers (in the
CST) are (2n−2d) and (2d−n). Then, the cost contributions
of each leaf in the last and the second last layers are 1

qd
and

1
qd−1 , respectively. By Lemma 1, we obtain the cost of RCST
and CST by summarizing the costs of all leaves.

We then prove that the RCST’s cost is optimal by induction
on the number of leaves. For a 2-leaves tree, the RCST is
optimal because it is the only tree. Suppose RCST Rn is
optimal for the n-nodes path, then we want to prove RCST
Rn+1 is optimal for the (n+1)-nodes path. Assume RCST is
not the optimal but a non-RCST tree Zn+1 is the optimal
tree for the n + 1 case. Let dR be the depth of Rn+1,
and dZ be the depth of Zn+1. Because RCST is also CST,
dR is the smallest height for any binary trees with n + 1
nodes. That is, dR ≤ dZ . In addition, Zn+1 is not RCST,
so we have dR < dZ . Removing a leaf (whose sibling is



TABLE I: Network description.
Scale Topology Node # |V | Diameter SD # δ
Small EEnet 12 351.71 km 72
Medium NOEL 19 554.61 km 171
Large Renator 37 1202.5 km 666

also a leaf) in the dZ’th layer from Zn+1, we obtain an ST
Zn, whose cost is Zn = Zn+1 − δdZ−1. Note that such
a leaf always exists as Zn+1 is an ST, so we can apply
Lemma 2 here. Similarly, we have Rn = Rn+1 − δdR−1

.
Since Zn+1 < Tn+1, we have Zn + δdZ−1 < Rn + δdR−1.
Thus Zn < Rn − [(2 − q)( 1

qdZ
− 1

qdR
)]. As dR < dZ ,

(2 − q)( 1
qdZ

− 1
qdR

) is always positive. That is, Zn < Rn,
which contradicts that Rn is optimal.

We can easily construct path-level optimal solutions by
constructing RCSTs, among which the CST is the simplest.
D. Proof of Theorem 2

The proof is also by induction, similar to the second part
of Theorem 1. It is easy to see that S4 is the worst swapping
tree for 4-hop paths: there are only two distinct 4-leaves trees
(in terms of cost): R4 and S4. We already know that R4 is
optimal, so S4 is worst.

If Sn is the worst tree, then we prove that Sn+1 is also
the worst tree with n + 1 leaves. If not, suppose Wn+1 is
the worst for n + 1 leaves (and it is not an SST). Then, we
have Sn+1 < Wn+1. Suppose dS and dW are the depths of
Sn+1 and Wn+1. Because Sn+1 is the highest ST, we have
dS = n > dW . By deleting one of the two deepest nodes in
Sn+1 and Wn+1, separately, we can obtain the cost of Sn and
Wn, which are Sn = Sn+1−δdS−1 and Wn = Wn+1−δdW−1.
Plug them in Sn+1 < Wn+1, Sn + δdS−1 < Wn + δdW−1.
Thus Sn < Wn − (2− q)( 1

qdS
− 1

qdW
). For the same reason,

Sn < Wn, which contradicts that Sn is the worst.

VII. PERFORMANCE EVALUATIONS

We first introduce our experiment settings and how to con-
struct the initial topology for the formulated problems. Then,
we report our experimental results which aim to answer i) how
the the proposed solutions perform in terms of optimality and
efficiency; ii) how to find good settings to construct a quantum
network for given users and their demands.
A. Simulation Settings

Quantum Network Topology. We consider three real-world
networks of different sizes from the Internet Topology Zoo
[28]: Small, Medium, and Large, as specified in Table I,
for G(V,E). Although these networks come with their own
topology, we do not want to limit our optimization within
existing edges. Instead, we only use nodes’ locations in these
networks, and connect each node to its closest ζ neighbors3.
The distance between two nodes is calculated based on their
coordinates using pyGeo [29]. If the graph is still not con-
nected, we repeatedly connect the closest components to make
it connected. For long edges (longer than a threshold) in the

3We call ζ the graph density parameter. If ζ = |V | − 1, the candidate
topology becomes a clique (complete graph). Obviously, a denser candidate
graph allows larger optimization space, leading to a possibly better objective
value but also harder to solve.

graph, we need to segment them since long edges can hardly
generate entanglements (the original edges are not deleted but
still left for larger optimization space). The default threshold
is set to 150km, which is set according to later experiments.

Entanglement Settings. Total SD pair number δ is set to
half of the total possible pair number, i.e., 1

4 |V |(|V | − 1).
Candidate path number k (for each SD pair) is set to 100.
The quantum channel parameters are set according to recent
physical implementation experiments of entanglement gener-
ation [30]–[33]. Specifically, the typical telecommunication
wavelength 1550 nm is adopted, and the fiber loss is 0.2
dB/km. With such parameters, the entanglement rate is 100
bps per channel at a 100 km distance (similar to the rate in the
above-cited experiments). The concrete capacity/rate for each
channel is calculated based on their real length and the above
parameters. For all quantum channels, we use the ‘meet-in-the-
middle’ scheme, i.e., the detectors are placed in the middle of
fibers and light sources are placed at the two sides. Device
initialization cost for repeaters/links (i.e., γ0

v & γ0
e ) are set to

10γv & 10γe, respectively.
Baselines. We consider the three TD formulations (Flow,

Path and Greedy) and their variations as baselines: (1) FLOW:
the F-TDP formulation; (2) PATH-SEQ: the P-TDP formu-
lation using the sequential path-level solution; (3) PATH-
OPT: the P-TDP formulation using our optimal path-level
solution RCST. (4) GREEDY-SEQ: the greedy algorithm
using sequential path-level solution; (5) GREEDY-OPT: the
greedy algorithm using our optimal path-level solution. Note
that the sequential swapping scheme is the most popular
default scheme in existing works, such as [15], [16], [18].

Implementation. Initial graphs are constructed and manipu-
lated using networkx [34]. Linear solver Gurobi [35] is used to
obtain solutions for FLOW and PATH. The reported running
times include all time used by the corresponding methods,
such as the model-building time for all methods and path-
solving time for PATH and GREEDY variants.

B. Optimality and Efficiency of TD Methods

We compare all TD methods for objective values and
running times under different settings.

Different Network Density. We know that a denser initial
network topology G allows a better solution but requires a
longer solving time. Therefore, we first compare the baselines
to see how they perform on networks of different density
ζ. Results are reported in Fig. 5 and we find the following
discoveries.

Generally, FLOW has the best objective value (i.e., smallest
cost) and longest running time; two PATH variations cost
medium time and have medium costs; two GREEDY variations
are the most efficient but their costs are the relevantly worst.

For the FLOW formulation, if optimally solved, gives us the
optimal objective on the given candidate graph. However, solv-
ing the FLOW formulation may take a longer time. In Medium
and Large networks, its running time does not increase on
denser initial graphs because we set the solver time to 600
seconds. All methods stop optimization after this upper bound.



(a) Objective-Small (b) Time-Small

(c) Objective-Medium (d) Time-Medium

(e) Objective-Large (f) Time-Large

Fig. 5: Objective values and running time of all methods with
different density ζ and network sizes. Here q = 0.75.

That is why FLOW’s running time does not increase much
after ζ = 6 in the Medium network. For a Large network,
FLOW needs even more time to build the model (as there are
too many node pairs) before optimization, which exceeds 104

seconds for ζ = 7, so we do not show its performance for a
denser Large graph. For ζ = 10 of Medium network, FLOW
is terminated before it obtains a good solution, so its objective
is no longer optimal and is worse than PATH-OPT’s.

When considering the path-level swapping solution, obvi-
ously our solution of OPT is better than the SEQ solution.
This confirms the conclusion from our proven main theorems.

More importantly, we can see that the objective value given
by PATH-OPT is very close to FLOW’s, which means that
PATH-OPT only loses marginal optimality. At the same time,
it is much more efficient in terms of running time.

Fig. 6 shows examples of the resulted topology as the
density of the candidate network increases. In these topologies,
larger green dots represent the user’s nodes (SD nodes), while
smaller blue dots are repeaters. We can see that a denser initial
network has more available edges and repeaters, hence larger
optimization space and less cost as shown in Fig. 5.

Swapping Success Probability. We also investigate how
lower swapping success probability q affects the topology
design. Fig. 7a shows the result over the Large network with
q = 0.5. First, PATH-OPT keeps being close to FLOW and
better than all others. A notable thing is that GREEDY-OPT
can now beat PATH-SEQ. That means, when q is smaller,

(a) ζ = 2 (b) ζ = 4 (c) ζ = 6

Fig. 6: Resulted topology by PATH-OPT for Medium networks
with different initial density ζ.

(a) Objective-Large (b) Objective-Medium

Fig. 7: (a) Objective values of all methods when swapping
success probability q = 0.5 for Large network. (b) Objective
values/running times of all methods with different segmenta-
tion lengths for Medium network.

better path-level swapping solution is more important than
global path selection. Second, PATH-SEQ cannot even solve
the problem when ζ = 2. This is because the paths are
typically longer in sparser graphs and SEQ path solutions are
extremely ineffective. Last, compared to q = 0.75 case in
Fig. 5e, PATH-SEQ and GREEDY-SEQ perform even more
incompetent than their OPT counterparts. All these show that
when E2E entanglements over a path are harder to establish
(i.e., lower q and longer path), our path-level optimal swapping
solution is getting more critical.

C. Network Planning Consideration

With the help of PATH-OPT, we explore how to find good
parameters to build good topology for quantum networks.

Segmentation Threshold. Segmentation threshold (the
length to decide the segmentation of quantum link for better
entanglements) is perhaps the most interesting parameter. As
shown in Fig. 7b, 150 km is the best length, which we use
as the default. If the threshold is too small, more intermediate
nodes are placed and more memory is used to generate E2E
entanglements along the long paths; when the threshold is
too large, we need fewer intermediate nodes but have to
deploy more channels as each channel is significantly weaker
for entanglement generation. Besides, the solving time (i.e.,
running time) monotonously decreases as the segmentation
length increases. A higher threshold results in a sparser graph,
leading to a simpler problem and reduced solving time.

Price Ratio. Now we investigate how the price of quan-
tum devices impacts the network topology. We know that
quantum optics and memory can be costly, however their
prices depend on different technologies that are still under
active development. Therefore, we explore the impact on
quantum network topology by the relative price of the two



important devices, i.e., quantum channels and memory. We
define the price ratio as the price of one memory slot to the
price of one kilometer of one single quantum channel, i.e.,
γv

γe
. We explore four ratios: 10:1, 1:1, 1:10, 1:100, where

the quantum memory price increases from less to more.

(a) γv

γe
= 1

10 (b) γv

γe
= 1

(c) γv

γe
= 10 (d) γv

γe
= 100

Fig. 8: Price ratio’s impact on
Medium network when ζ = 5.

Fig. 8 shows that when
memory is relatively
cheap, the resulting
topology uses more
intermediate nodes;
when memory is more
expensive the number of
repeaters is significantly
reduced, e.g., from 7
(γv

γe
= 1) to 1 (γv

γe
= 100).

And in the latter case
(with expensive memory)
many edges no longer
use the intermediate
nodes introduced in
segmentation, but directly connect far-away nodes via
longer direct quantum channels (which may be weak for
entanglement generation, but are cheap enough).

Demand Intensity. Finally, we test different user demand
intensities by setting the fraction of SD pairs from total pairs
to 0.1, 0.5, 1.0 with the demand of each pair as 1, 10, 100
correspondingly. We call these three cases as Low, Medium,
and High demand intensity. Fig. 9 shows that the resulted
topology becomes denser for higher demand intensity. Note
that in lower-intensity case, some user nodes are removed
since they do not have demands and are not used for others
as intermediate nodes.

(a) Low (b) Medium (c) High

Fig. 9: Optimized network topology for Medium network, with
Low, Medium, and High demand intensity.

VIII. CONCLUSION

In this paper, we study the topology design problem for
quantum networks and introduce two formulations along with
their corresponding solutions. Our findings indicate that while
the flow-based formulation achieves optimality without loss,
it is challenging to solve. On the other hand, the path-based
formulation, when enhanced with our path-level entanglement
solution (proved to be optimal among all path-level swapping
strategies), proves to be empirically efficient with only a
marginal loss in optimality. Additionally, we investigate the
impact of key factors (such as edge segmentation, device cost,
and user demands) on the network topology using the path-
based solution. We plan to investigate further improvements
of our solutions via smarter repeater placements.
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