
1

Group Formation and Sampling in Group-based
Hierarchical Federated Learning

Jiyao Liu, Xuanzhang Liu, Xinliang Wei, Member, IEEE , Hongchang Gao, and Yu Wang, Fellow, IEEE

Abstract—Hierarchical federated learning has emerged as a pragmatic approach to addressing scalability, robustness, and privacy
concerns within distributed machine learning, particularly in the context of edge computing. This hierarchical method involves grouping
clients at the edge, where the constitution of client groups significantly impacts overall learning performance, influenced by both the
benefits obtained and costs incurred during group operations (such as group formation and group training). This is especially true for
edge and mobile devices, which are more sensitive to computation and communication overheads. The formation of groups is critical
for group-based hierarchical federated learning but often neglected by researchers, especially in the realm of edge systems. In this
paper, we present a comprehensive exploration of a group-based federated edge learning framework utilizing the hierarchical
cloud-edge-client architecture and employing probabilistic group sampling. Our theoretical analysis of its convergence rate, considering
the characteristics of client groups, reveals the pivotal role played by group heterogeneity in achieving convergence. Building on this
insight, we introduce new methods for group formation and group sampling, aiming to mitigate data heterogeneity within groups and
enhance the convergence and overall performance of federated learning. Our proposed methods are validated through extensive
experiments, demonstrating their superiority over current algorithms in terms of prediction accuracy and training cost.

Index Terms—Hierarchical federated learning, non-IID, group formation, group sampling, distributed learning, edge computing

✦

1 INTRODUCTION

Hierarchical federated learning (HFL) [2], [3] has emerged
as a more pragmatic federated learning (FL) [4] paradigm
in terms of scalability, efficiency, robustness, and privacy
protection. Federated learning, whose fundamental purpose
protecting users’ data privacy, is actually born hierarchical
[3]: clients are typically divided into groups to reduce the
communication and computation costs associated with se-
cure aggregation [5]. Given that edge servers can signifi-
cantly enhance scalability, connection stability, and system
robustness, deploying the HFL framework within a client-
edge-cloud architecture, as depicted in Fig. 1, is a natural
progression.

In this paper, we consider group-based federated edge
learning (Group-FEL) in such an HFL framework over
the client-edge-cloud architecture. First, each edge server
manages a set of clients and groups them based on a specific
policy. The group information is transmitted to the cloud.
The cloud adopts a probabilistic group sampling, selecting
a subset of client groups from all groups to perform HFL
training at each global round. Clients within a selected
group download the global model, train it with their own
datasets, and send local updates to the edge server for
group aggregation. Group-level operations, such as secure
aggregation and backdoor detection, take place during this
aggregation. Each group iteratively conducts this in-group

• J. Liu, X. Liu, H. Gao, and Y. Wang are with the Department of Computer
and Information Sciences, Temple University, Philadelphia, PA 19112,
USA. {jiyao.liu,xzliu,hongchang.gao,wangyu}@temple.edu. X. Wei is
with the Shenzhen Institute of Advanced Technology, Chinese Academy of
Sciences, Shenzhen, 518055, China. xl.wei@siat.ac.cn. Wei and Wang are
co-corresponding authors. This work is partially supported by US NSF
under Grant No. CNS-2006604, CNS-2128378 and OAC-2417716. A
preliminary version of this paper was appeared in [1].

Cloud
Edge

Clients

Remote Cloud Edge Servers Mobile Devices Local Model Upload

Local Model Group Model Global Model
Group Model Upload

Global Aggregation

Group
Aggregation

Global Model Download

Group
Aggregation

Group
Aggregation

Fig. 1. Group-based federated edge learning (Group-FEL) via the client-
edge-cloud architecture. Edge servers perform the group formation and
group aggregation, while the remote cloud performs the group sampling
and global aggregation. In this example, four client groups are formu-
lated.

workflow before forwarding the aggregated updates to the
cloud aggregator at certain rounds. The cloud aggregator
performs the final global aggregation and subsequently
sends the latest global model back to the edge servers and
mobile clients. It’s noteworthy that in scenarios where there
is only one group on each edge server, the system reverts to
a conventional client-edge-cloud HFL configuration.

Group-FEL gains benefits from the edge network due
to the low communication cost, more stable connections,
and a large number of connected clients. However, group
operations may still incur potentially high costs, which have
not yet been well studied by previous works. In Fig. 2(a), we
illustrate the overheads incurred at a client through a real-
world measurement of a group-based FEL implemented on

2

0 10 20 30 40 50
Data/Group Size

0

10

20

30

40

50
Ti

m
e

(s
)

Secure Aggregation
Backdoor Detection
Training

0 1 2 3 4 5
Cost 1e5

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

GS=5
GS=10
GS=15
GS=20

(a) group overheads (b) group size (GS)

Fig. 2. Overhead of Group-FEL: (a) different group overheads of a client
in a Raspberry Pi edge system: for training cost, x-axis is training data
number; for secure aggregation and backdoor detection, x-axis is group
size; (b) accuracy over cost with different group sizes.

Raspberry Pi based edge systems. The plot presents three
types of overheads: training cost, secure aggregation cost,
and backdoor detection cost. Notably, the overheads related
to group operations can be comparable to or even signif-
icantly surpass the training cost. Considering that clients
typically possess a limited amount of data, the overheads as-
sociated with group operations will overwhelmingly dom-
inate the costs when the group size is large. This is critical
for HFL using mobile or IoT devices as clients, due to their
constrained resources.

Simply reducing the group size, however, may not help.
As shown in Fig. 2(b), even with a reduction in group size
from 20 to 5, the total cost (defined lately as Eq. (5)) required
to achieve a certain level of accuracy remains similar. Here,
the plotted cost represents the total cost during the entire FL
training period including both training and group operation
costs. The rationale behind the observation that a smaller
group size does not always lead to a reduction in total cost
is that data within smaller client groups tends to be more
skewed. This skewness hampers the convergence, thereby
resulting in higher costs. Numerous FL studies [6]–[14]
have highlighted that the non-IID (non-Independent and
Identically Distributed) issue significantly hinders the FL
convergence.

In this paper, for Group-FEL, we first theoretically derive
its convergence rate and show that the data distribution
within groups (i.e., the IID degree of the group data) indeed
affects the training convergence in theory. Based on such
an observation, we introduce a new grouping method (i.e.,
COV-GROUPING), which leverages the coefficient of varia-
tion (CoV) to form client groups. Instead of simply playing
trade-offs between the group size and the IID degree (or
between cost and accuracy), our group formation method
generates smaller groups with less skewed data. In that way,
it is possible to form groups that are beneficial to conver-
gence and are less costly. In addition, we further propose
different CoV-based sampling methods to calculate group
sampling probabilities, so that priority is given to groups
with better CoV values. Our results also show that CoV is
effective in judging the quality of a group. This observation
is also useful for other HFL-based methods. Finally, we com-
pare our proposed method with existing non-IID countering
methods via extensive experiments, including the training
method based approaches (FedProx [7] and SCAFFOLD
[8]), client assignment based approaches (OUEA [15] and
SHARE [16]), and a personalized FL approach (FedCLAR

[13]). Our results confirm the advances of our proposed
method over these existing methods in a group-based HFL
setting.

In short, our contributions are summarized as follows:
• We introduce a general group-based hierarchical feder-

ated edge learning framework (Group-FEL) where edge
servers perform client grouping and the cloud performs
probabilistic group sampling.

• We provide a theoretical convergence analysis of
Group-FEL with emphasis on the quality of group data
distribution, and discovery that group heterogeneity
plays an important role in the convergence. This result
applies to all generic HFL systems1.

• We design a new group formation algorithm based on
the group’s coefficient of variation (CoV), to generate
groups with better data distribution, thus speeding up
convergence and reducing costs.

• We also propose several group sampling strategies to
sample groups with better distribution. The results also
shed light on other group sampling methods.

• Extensive experiments are conducted to demonstrate
the effectiveness of the proposed group formation algo-
rithm, sampling strategies, as well as the training result
of the whole system.

To the best of our knowledge, this is the first work that
considers the impact of group overhead in HFL framework
over edge systems, and offers a pioneer yet comprehensive
exploration, including theoretical analysis, group formation,
and sampling strategy specifically designed for Group-FEL.
We hope this works inspires more future investigations
into this important but ignored problem. The remaining
of this paper is organized as follows. Section 2 introduces
the Group-FEL framework, while its detailed convergence
analysis are provided in Section 3. Based on the observation
from the analysis, we then propose our group formation
algorithm in Section 4 and group sampling methods in Sec-
tion 5. Evaluations of the proposed methods are provided
in Section 6. Section 7 reviews related works. Section 8
concludes the paper with possible future directions.

2 GROUP-BASED HFL FRAMEWORK

We now introduce the system architecture, learning algo-
rithm, and cost model in the studied Group-FEL framework.

2.1 System Architecture
In this paper, we consider a group-based hierarchical fed-
erated learning over edge computing, as shown in Fig. 1.
We assume that multiple mobile clients (let C be the client
set) are connected to cloud via edge servers. Each edge
server will divide its clients (Cj , the client set of j-th edge
server) into multiple mutually exclusive client groups. Let
G and Gj be the set of all groups and the set of groups of
j-th edge server, respectively. Then the federated learning
is performed with selected client groups (denoted by St)
based on a certain selection mechanism (i.e., via group
sampling with a probability vector p) at each global round

1. Our theoretical analysis does not rely on a specific grouping
method, thus is general enough to cover any generic group-based HFL.
Furthermore, since we consider both the quality of the group data
distribution and the probability of sampling the group, our result is
different from the existing HFL convergence analysis (e.g., [2] and [15]).

3

Probability based Group Sampling at Cloud

CoV based Group Formation at Edge

… … …

!1

!2

!3

!4

{#1, #2, #3, #4}

based	on	 7 = {)!}

CoV Grouping: greedy algorithm

1. Compute group sampling probability)!
2. Group sampling based on)!

Group selected

… … …

Edge
Server j

… … …

… … …

{#1, #2, #3, #4}

Probability based Group Sampling
at Cloud

CoV based Group Formation at Edge

… … …

!1

!2

!3

!4

{#1, #2, #3, #4}

)!

CoV
Grouping: greedy algorithm

1. Compute group sampling probability)!
2. Group sampling based on)!

Group selected

… … …

Edge
Server j

… … …

… … …

{#1, #2, #3, #4}

Fig. 3: The overall framework of Group-FEL.

into multiple mutually exclusive client groups. Let G and
Gj be the set of all groups and the set of groups of j-
th edge server, respectively. Then the federated learning are
performed with selected client groups (denoted by St) based
on certain selection mechanism (i.e., via group sampling with
a probability vector p) at each global round t. Each client
ci in a selected group performs local training and sends it
local model updates to its edge server for group aggregation.
Then edge servers will perform group aggregation and submit
the group model updates to the cloud server (i.e., parameter
server) for global aggregation. The overall training algorithm
of group-based FEL is shown in Algorithm 1.

In Algorithm 1, Lines 2-4 are for group formation at each
edge server, and Line 5 is for the computation of sampling
probability vector p of all groups. These are important steps
for Group-FEL, thus we will present our detailed design of
them in Section V and Section VI, respectively. Lines 6-21 are
the group-based federated learning steps, which include group
sampling (Line 7), local update (Line 14), group aggregation
(Line 17), and global aggregation (Line 20). Here, xt, xg

t,k,
xi

t,k,e represent the global model at t-th global round, the
group model at k-th group round within t-th global round,
the local model of client ci at e-th local round within k-th
group round and t-th global round, respectively.

In classic federated learning, given the client set C with N
clients, and the loss function fi of the client ci, we have the
global loss function

f(x) =
X

ci2C

ni

n
fi(x), (1)

where ni is the number of data entries on the i-th client, and
n =

PN�1
i=0 ni. When we divide clients into a set of groups

Algorithm 1 Group-based Federated Edge Learning
Input: Client sets Cj of each server, number of sampled groups
in each round S = |St|, initial global model x0, global round
T , group round K, local round E, learning rate ⌘.
Output: Final global model xT�1.

1: G = ;
2: for each client set Cj do . in parallel
3: G = G [COV-GROUPING(Cj) . group formation
4: end for
5: p = SAMPLING-PROB(G) . group sampling prob
6: for t from 0 to T � 1 do
7: Sample St ✓ G according to p . group sampling
8: for group g in St do . in parallel
9: xg

t,0 = xt . initialize group model
10: for k from 0 to K � 1 do
11: for client ci in group g do . in parallel
12: xi

t,k,0 = xg
t,k . initialize client model

13: for e from 0 to E � 1 do
14: xi

t,k,e+1 = xi
t,k,e � ⌘rfi(x

i
t,k,e; ⇠

i
t,k,e)

. local update
15: end for
16: end for
17: xg

t,k+1 =
P

i2g
ni

nt
xi

t,k,E�1

. group aggregation
18: end for
19: end for
20: xt+1 =

P
g2St

ng

nt
xg

t,K�1 . global aggregation
21: end for

G, then for each group g, its loss function is

fg(x) =
X

ci2g

ni

ng
fi(x), (2)

where ng is the number of data on all clients inside the group
g. Hence, the global loss function can be rewritten as

f(x) =
X

g2G

ng

n
fg(x). (3)

At Line 20 of Algorithm 1, the global aggregation may
lead to the learned model biased since some groups have
higher probability to be sampled during the group sampling.
This is true for our design, since we always give higher
priority to groups with better distribution to boost convergence.
Therefore, we will discuss this in Section VI. If the model
is required to be unbiased, a correction factor 1

pgS can be
introduced and Line 20 is then replaced by

xt+1 =
X

g2St

1

pgS
· ng

n
xg

t,K�1, (4)

where pg is the probability to sample the group g during the
group sampling and S is the number of sampled groups in
each round S = |St|.

Probability based Group Sampling
at Cloud

CoV based Group Formation at Edge

… … …

!1

!2

!3

!4

{#1, #2, #3, #4}

)!

CoV
Grouping: greedy algorithm

1. Compute group sampling probability)!
2. Group sampling based on)!

Group selected

… … …

Edge
Server j

… … …

… … …

{#1, #2, #3, #4}

Fig. 3: The overall framework of Group-FEL.

into multiple mutually exclusive client groups. Let G and
Gj be the set of all groups and the set of groups of j-
th edge server, respectively. Then the federated learning are
performed with selected client groups (denoted by St) based
on certain selection mechanism (i.e., via group sampling with
a probability vector p) at each global round t. Each client
ci in a selected group performs local training and sends it
local model updates to its edge server for group aggregation.
Then edge servers will perform group aggregation and submit
the group model updates to the cloud server (i.e., parameter
server) for global aggregation. The overall training algorithm
of group-based FEL is shown in Algorithm 1.

In Algorithm 1, Lines 2-4 are for group formation at each
edge server, and Line 5 is for the computation of sampling
probability vector p of all groups. These are important steps
for Group-FEL, thus we will present our detailed design of
them in Section V and Section VI, respectively. Lines 6-21 are
the group-based federated learning steps, which include group
sampling (Line 7), local update (Line 14), group aggregation
(Line 17), and global aggregation (Line 20). Here, xt, xg

t,k,
xi

t,k,e represent the global model at t-th global round, the
group model at k-th group round within t-th global round,
the local model of client ci at e-th local round within k-th
group round and t-th global round, respectively.

In classic federated learning, given the client set C with N
clients, and the loss function fi of the client ci, we have the
global loss function

f(x) =
X

ci2C

ni

n
fi(x), (1)

where ni is the number of data entries on the i-th client, and
n =

PN�1
i=0 ni. When we divide clients into a set of groups

Algorithm 1 Group-based Federated Edge Learning
Input: Client sets Cj of each server, number of sampled groups
in each round S = |St|, initial global model x0, global round
T , group round K, local round E, learning rate ⌘.
Output: Final global model xT�1.

1: G = ;
2: for each client set Cj do . in parallel
3: G = G [COV-GROUPING(Cj) . group formation
4: end for
5: p = SAMPLING-PROB(G) . group sampling prob
6: for t from 0 to T � 1 do
7: Sample St ✓ G according to p . group sampling
8: for group g in St do . in parallel
9: xg

t,0 = xt . initialize group model
10: for k from 0 to K � 1 do
11: for client ci in group g do . in parallel
12: xi

t,k,0 = xg
t,k . initialize client model

13: for e from 0 to E � 1 do
14: xi

t,k,e+1 = xi
t,k,e � ⌘rfi(x

i
t,k,e; ⇠

i
t,k,e)

. local update
15: end for
16: end for
17: xg

t,k+1 =
P

i2g
ni

nt
xi

t,k,E�1

. group aggregation
18: end for
19: end for
20: xt+1 =

P
g2St

ng

nt
xg

t,K�1 . global aggregation
21: end for

G, then for each group g, its loss function is

fg(x) =
X

ci2g

ni

ng
fi(x), (2)

where ng is the number of data on all clients inside the group
g. Hence, the global loss function can be rewritten as

f(x) =
X

g2G

ng

n
fg(x). (3)

At Line 20 of Algorithm 1, the global aggregation may
lead to the learned model biased since some groups have
higher probability to be sampled during the group sampling.
This is true for our design, since we always give higher
priority to groups with better distribution to boost convergence.
Therefore, we will discuss this in Section VI. If the model
is required to be unbiased, a correction factor 1

pgS can be
introduced and Line 20 is then replaced by

xt+1 =
X

g2St

1

pgS
· ng

n
xg

t,K�1, (4)

where pg is the probability to sample the group g during the
group sampling and S is the number of sampled groups in
each round S = |St|.

Probability based Group Sampling
at Cloud

CoV based Group Formation at Edge

… … …

!1

!2

!3

!4

{#1, #2, #3, #4}

)!

CoV
Grouping: greedy algorithm

1. Compute group sampling probability)!
2. Group sampling based on)!

Group selected

… … …

Edge
Server j

… … …

… … …

{#1, #2, #3, #4}

Fig. 3: The overall framework of Group-FEL.

into multiple mutually exclusive client groups. Let G and
Gj be the set of all groups and the set of groups of j-
th edge server, respectively. Then the federated learning are
performed with selected client groups (denoted by St) based
on certain selection mechanism (i.e., via group sampling with
a probability vector p) at each global round t. Each client
ci in a selected group performs local training and sends it
local model updates to its edge server for group aggregation.
Then edge servers will perform group aggregation and submit
the group model updates to the cloud server (i.e., parameter
server) for global aggregation. The overall training algorithm
of group-based FEL is shown in Algorithm 1.

In Algorithm 1, Lines 2-4 are for group formation at each
edge server, and Line 5 is for the computation of sampling
probability vector p of all groups. These are important steps
for Group-FEL, thus we will present our detailed design of
them in Section V and Section VI, respectively. Lines 6-21 are
the group-based federated learning steps, which include group
sampling (Line 7), local update (Line 14), group aggregation
(Line 17), and global aggregation (Line 20). Here, xt, xg

t,k,
xi

t,k,e represent the global model at t-th global round, the
group model at k-th group round within t-th global round,
the local model of client ci at e-th local round within k-th
group round and t-th global round, respectively.

In classic federated learning, given the client set C with N
clients, and the loss function fi of the client ci, we have the
global loss function

f(x) =
X

ci2C

ni

n
fi(x), (1)

where ni is the number of data entries on the i-th client, and
n =

PN�1
i=0 ni. When we divide clients into a set of groups

Algorithm 1 Group-based Federated Edge Learning
Input: Client sets Cj of each server, number of sampled groups
in each round S = |St|, initial global model x0, global round
T , group round K, local round E, learning rate ⌘.
Output: Final global model xT�1.

1: G = ;
2: for each client set Cj do . in parallel
3: G = G [COV-GROUPING(Cj) . group formation
4: end for
5: p = SAMPLING-PROB(G) . group sampling prob
6: for t from 0 to T � 1 do
7: Sample St ✓ G according to p . group sampling
8: for group g in St do . in parallel
9: xg

t,0 = xt . initialize group model
10: for k from 0 to K � 1 do
11: for client ci in group g do . in parallel
12: xi

t,k,0 = xg
t,k . initialize client model

13: for e from 0 to E � 1 do
14: xi

t,k,e+1 = xi
t,k,e � ⌘rfi(x

i
t,k,e; ⇠

i
t,k,e)

. local update
15: end for
16: end for
17: xg

t,k+1 =
P

i2g
ni

nt
xi

t,k,E�1

. group aggregation
18: end for
19: end for
20: xt+1 =

P
g2St

ng

nt
xg

t,K�1 . global aggregation
21: end for

G, then for each group g, its loss function is

fg(x) =
X

ci2g

ni

ng
fi(x), (2)

where ng is the number of data on all clients inside the group
g. Hence, the global loss function can be rewritten as

f(x) =
X

g2G

ng

n
fg(x). (3)

At Line 20 of Algorithm 1, the global aggregation may
lead to the learned model biased since some groups have
higher probability to be sampled during the group sampling.
This is true for our design, since we always give higher
priority to groups with better distribution to boost convergence.
Therefore, we will discuss this in Section VI. If the model
is required to be unbiased, a correction factor 1

pgS can be
introduced and Line 20 is then replaced by

xt+1 =
X

g2St

1

pgS
· ng

n
xg

t,K�1, (4)

where pg is the probability to sample the group g during the
group sampling and S is the number of sampled groups in
each round S = |St|.

Fig. 3. The overall grouping framework in Group-FEL: (lower) CoV-
based group formation at the edge, in this example, four groups are
formed at each edge server; and (upper) probability based group sam-
pling at the cloud, where the five selected groups are framed.

t. Each client ci in a selected group performs local training
and sends its local model updates to its edge server for
group aggregation. Then edge servers will perform group
aggregation and submit the group model updates to the
cloud server (i.e., parameter server) for global aggregation.
Fig. 3 illustrates the overall grouping framework of Group-
FEL, where the grouping is performed at the edge server for
its clients, and the group sampling is done at the cloud with
the sampling probability vector.

2.2 Learning Algorithm

The overall training algorithm of group-based FEL is shown
in Algorithm 1. In Algorithm 1, Lines 2-3 are for group
formation at each edge server, and Line 4 is for the com-
putation of sampling probability vector p of all groups at
the cloud. These are important steps for Group-FEL, thus
we will present our detailed design of them in Sections 4
and 5, respectively. Lines 5-15 are the group-based federated
learning steps, which include group sampling (Line 6), local
update (Line 13), group aggregation (Line 14), and global
aggregation (Line 15). Here, xt, xg

t,k, xi
t,k,e represent the

global model at t-th global round, the group model at k-
th group round within t-th global round, the local model
of client ci at e-th local round within k-th group round and
t-th global round, respectively.

In classic federated learning, given the client set C with
N clients, and the loss function fi of the client ci, we have
the global loss function

f(x) =
∑

ci∈C

ni

n
fi(x), (1)

where ni is the data entry number on i-th client, and n =∑N−1
i=0 ni.
When we divide clients into a set of groups G, then for

each group g, its loss function is
fg(x) =

∑

ci∈g

ni

ng
fi(x), (2)

where ng is the number of data on all clients inside the
group g. Hence, the global loss function can be rewritten as

f(x) =
∑

g∈G

ng

n
fg(x). (3)

Algorithm 1 GROUP-BASED FEDERATED EDGE LEARNING

Input: Client sets Cj , number of sampled groups in each
round S = |St|, initial global model x0, global round T ,
group round K , local round E, learning rate η.
Output: Final global model xT−1.

1: G = ∅
2: for each client set Cj do ▷ in parallel
3: G = G ∪ COV-GROUPING(Cj) ▷ group formation
4: p =SAMPLING-PROB(G) ▷ group sampling prob
5: for t from 0 to T − 1 do
6: Sample St ⊆ G according to p ▷ group sampling
7: for group g in St do ▷ in parallel
8: xg

t,0 = xt ▷ initialize group model
9: for k from 0 to K − 1 do

10: for client ci in group g do ▷ in parallel
11: xi

t,k,0 = xg
t,k ▷ initialize client model

12: for e from 0 to E − 1 do
13: xi

t,k,e+1 = xi
t,k,e − η∇fi(x

i
t,k,e; ξ

i
t,k,e)

▷ local update
14: xg

t,k+1 =
∑

i∈g
ni

ng
xi
t,k,E−1 ▷ group aggregation

15: xt+1 =
∑

g∈St

ng

nt
xg
t,K−1 ▷ global aggregation

16: return xT−1

At Line 15 of Algorithm 1, the global aggregation may
lead to the learned model biased since some groups have
higher probability to be sampled during the group sam-
pling. This is true for our design since we always give
higher priority to groups with better distribution to boost
convergence. Therefore, we will discuss this in Section 5. If
the model is required to be unbiased, a correction factor 1

pgS

can be introduced and Line 15 is then replaced by

xt+1 =
∑

g∈St

1

pgS
· ng

n
xg
t,K−1, (4)

where pg is the probability to sample the group g during the
group sampling and S is the number of sampled groups in
each round S = |St|. Note that nt in Line 15 of Algorithm 1
in the number of data entries on the t-th global round.

2.3 Cost Model
To measure the learning cost of Group-FEL, we focus on
both computation and communication loads on all clients.
Each client has two types of costs: training cost and group
operation cost.

The built-in training cost Hi(ni) of client ci measures the
time needed to iterate through its trainset once. Given the
hardware, model, and training hyperparameters are fixed,
this cost is proportional to the data sample number ni

owned by this client.
Overheads incurred by group operations (both for secure

or privacy-preserving computation and communication) are
quadratic to the group size |g| [5], [17]. These two assump-
tions can be further confirmed by our experiments shown
in Fig. 9. Hereafter, we use Og(|g|) to denote the group
overhead of each client in group g. This group overhead
cost is often ignored in the analysis of existing works.

By adding training costs and group operation costs of all
clients in each group, the total learning costs in the whole
training process can be measured by

4

O =
T−1∑

t=0


∑

g∈St

K
∑

ci∈g

(Og(|g|) + EHi(ni))


. (5)

In our evaluations, we will measure the performance of all
algorithms using the achieved accuracy by certain learning
costs instead of the accuracy by the global round.

3 CONVERGENCE ANALYSIS

We now present our main theorem on the convergence
of Group-FEL with an emphasis on the group characters.
This result is an important theoretical contribution and also
inspires the design of our grouping formation and sampling
schemes. The result applies to all HFL structures where an
intermediary aggregation layer is used. The result is also
general enough to cover existing convergence results2.

3.1 Assumptions and Lemmas
To perform convergence analysis, previous works [18]–[20]
have made common assumptions about the local and global
loss functions. We simply borrow and list them here.
Assumption 1. Bounded variance of local gradient: for any

local loss function fi,
∥∇fi(x; ξ

i)−∇fi(x)∥2 ≤ σ2. (6)

Here ξi denotes the data used to compute the gradient at
client ci in a certain round. Clients may not always use
all data to calculate the gradient, thus there is a variance
compared to the full gradient.
Assumption 2. L-smoothness: for any local loss function fi

(also global loss function f),
∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥. (7)

Assumption 3. Bounded local heterogeneity: for any local
loss function fi,

∥∇fi(x)−∇f(x)∥2 ≤ ζ2. (8)

Assumption 4. Bounded group heterogeneity: the hetero-
geneity between any group loss function fg and global
loss function f satisfies

∥∇fg(x)−∇f(x)∥2 ≤ ζ2g . (9)

Here ζg is a constant that measures the heterogeneity be-
tween any fg and f . There is no practical way to compute
ζg and L but it is generally believed that ζg relies on the dif-
ference between the global and group data distributions, i.e.,
the more similar the two distributions are, the smaller ζg is.
Note that although ζg and ζ are both on heterogeneity they
are quite different in our design. ζ reflects the heterogeneity
caused by individual clients which cannot be controlled,
while ζg is the heterogeneity of the formed groups. In
Group-FEL, if we can control the group formation smartly
to reduce ζg , then the selected groups will be more IID, thus
leading to better performance.

In the proofs of two lemmas needed for our main theo-
rem, we will use the following lemmas on the properties of
fg with local update (i.e., Fg =

∑
i∈g

ni

ng

∑E−1
e=0 ∇fi(x

i
e; ξ

i
e))

and the bound of
∑

g∈G ∥xg
t,k − xt∥2. The proof of these

lemmas are provided as supplemental material.

2. When |St| = |G|, it degrades to HFL without group sampling.
When there is only one group on each edge server, it degrades to the
classic HFL.

Lemma 1. The gradient variance of Fg is bounded by
∥∇Fg(x; ξg)−∇Fg(x)∥2 ≤ γ(1 + 10η2E2L2)E2σ2.

Lemma 2. The smoothness of Fg is bounded by
∥∇Fg(x)−∇Fg(y)∥2 ≤ 6γE2L2∥x− y∥2 + 10γη2E4L2σ2.

Lemma 3. The heterogeneity of Fg is bounded by

∥∇Fg(x)− E∇f(x)∥2 ≤ (
3γE

|g| + 15γη2E3)σ2 + 90γη2E4ζ2

+ 3E2ζ2g + 90γη2E2L2∥E∇f(x)∥2.

Lemma 4.
∑

g∈G ∥xg
t,k − xt∥2 is bounded by

1

|G|
∑

g∈G
∥xg

t,k − xt∥2 ≤ λσγσ
2 + λ3ζ

2 + 90η2K2E2ζ2g

+ λfE[∥ηE∇f(xt)∥2].

Here, the constants λσ, λ3, λf are defined in Theorem 5.

3.2 Main Theorem on Convergence
Theorem 5. The convergence rate of Group-FEL is bounded

as follows,
1

T

T−1∑

t=0

∥∇f(xt)∥2 ≤ f(x0)− E[f(xT)]

λ1ηTKE
+

λs · Γp

|St|
λ1KE

+
γΓ(λ2σ

2 + λ3ζ
2 + λ4ζ

2
g)

λ1
. (10)

Here η is the learning rate, and γ,Γ,Γp and constants
λ1, λ2, λ3, λ4, λs, λσ, λf are defined or constrained by
following (to simplify the expression of the final result
in the proofs)

γ =|g|2[1

|g|2 + V ar(
ni

ng
)], (11)

Γ =|G|2[1

|G|2 + V ar(
ng

n
)], Γp ≥

∑

g∈G

1

pg
, (12)

λs =ηγΓK2(1 + 10η2E2L2σ2), (13)

0 < λ1 ≤1

2
− 3λfηγΓKEL2, (14)

λ2 =3λσγL
2 + 5η2E2L2, (15)

λ3 =2700η4γK2E4L2, λ4 = 90η2K2E2L2, (16)

λf =30η2K2(1 + 90γη2E2L2), (17)

λσ =5Kη2E2[1 + ((1 + 6K)E + 9K)10η2EL2 +
18K

|g|E],

(18)

η ≤ 1

2KE
, η ≤ 1√

6(E − 1)(2E − 1)L2
, (19)

η ≤ 1√
36γ(K − 1)(2K − 1)E2L2

). (20)

Proof: Due to the space limit, we cloud not include all
proof details. Here we only present a brief proof skeleton.
First, we consider another form of Assumption 2, as

f(y) ≤ f(x) + ⟨∇f(x), (y − x)⟩+ L

2
∥x− y∥2. (21)

Here, ⟨, ⟩ is the vector inner production operator. Based on
this smoothness assumption, we can have

E [f(xt+1)] ≤ f(xt)− ηKE∥∇f(xt)∥2 +
L

2
Et∥∆t∥2

+ ⟨∇f(xt),Et [∆t + ηKE∇f(xt)]⟩, (22)

5

where ∆t = xt+1 − xt =
∑

g∈St

ng

nt

∑K−1
k=0 η∇Fg(xt,k)

is the global update at the round t and Fg(x) =∑
i∈g

ni

ng

∑E−1
e=0 fi(xe) is single round group update. By

defining A1 = ⟨∇f(xt),Et [∆t + ηKE∇f(xt)]⟩ and A2 =
Et∥∆t∥2, we can rewrite Eq. (22) as

E [f(xt+1)] ≤ f(xt)− ηKE∥∇f(xt)∥2 +A1 +
L

2
A2. (23)

Then we bound A1 and A2 by proving Lemma 6 and
Lemma 7, respectively. Proofs of these two lemmas are
provided in the next subsection. Bringing such bounds into
Eq. (23), we then have

E [f(xt+1)] ≤f(xt)− ηKE(
1

2
− 3λfηγΓKEL2)∥∇f(xt)∥2

+ λ2ηKEγΓσ2 + λ3ηKEγΓζ2 + λ4ηKEγΓζ2g

+
η2γΓΓpK

2

|St|
(1 + 10η2E2L2σ2)

+ (η2 − n

2KE
)Et


∥

∑

g∈G

ng

n

K−1∑

k=0

∇Fg(x
g
t,k)∥2


 .

(24)

With conditions of Eqs. (13)-(20), we can show

E [f(xt+1)] ≤f(xt)− λ1ηKE∥∇f(xt)∥2 + ηγΓKE

(λ2σ
2 + λ3ζ

2 + λ4ζ
2
g) + η · λs ·

Γp

|St|
. (25)

Finally, by rearranging and telescoping, we have

1

T

T−1∑

t=0

∥∇f(xt)∥2 ≤ f(x0)− E[f(xT)]

λ1ηTKE
+

λs · Γp

|St|
λ1KE

+
γΓ(λ2σ

2 + λ3ζ
2 + λ4ζ

2
g)

λ1
.

Recall that T , K , E, and η are the number of global
rounds, the number of group rounds in each global round,
the number of local rounds in each group round, and the
learning rate in local updating, respectively, as defined in
Algorithm 1. The inequality in Theorem 5 (i.e., Eq. (10))
tells us that when the right-hand side is diminishing as
T increases (if properly select the learning rate η, e.g.,
η = 1√

T
), the gradient norm ∥∇f(xt)∥ tends to be zero,

which means the model converges to a local minimum.

3.3 Proofs of Lemmas 6 and 7

We now prove Lemmas 6 and 7 on bounds A1 and A2,
which are used in the above proof of the main theorem.

Lemma 6. Under the assumptions and conditions in Theo-
rem 5, A1 is bounded as follows

A1 ≤ ηKE(
1

2
+ 90η3γΓK3E3L2)∥∇f(xt)∥2

+ λ2ηKEγΓσ2 + λ3ηKEγΓζ2 + λ4ηKEγΓζ2g

− η

2KE
Et


∥

∑

g∈G

ng

n

K−1∑

k=0

∇Fg(x
g
t,k)∥2


 . (26)

Proof: Since A1 = ⟨∇f(xt),Et [∆t + ηKE∇f(xt)]⟩,

A1 = ⟨∇f(xt),Et[(
∑

g∈G

ng

n

K−1∑

k=0

∑

i∈g

ni

ng

E−1∑

e=0

−η∇fi(xt,k,e; ξ
i
t,k,e))

+ ηKE∇f(xt)]⟩

= ⟨
√
ηKE∇f(xt),−

√
η√

KE
Et[(

∑

g∈G

ng

n

K−1∑

k=0

∇Fg(x
g
t,k))

−KE∇f(xt)]⟩

≤ η

2KE
Et[∥

∑

g∈G

ng

n

K−1∑

k=0

(∇Fg(x
g
t,k)−∇Fg(xt))∥2]

+
ηKE

2
∥∇f(xt)∥2 −

η

2KE
Et[∥

∑

g∈G

ng

n

K−1∑

k=0

∇Fg(x
g
t,k)∥2].

Due to the smoothness of of Fg (Lemma 2), we have

A1 ≤ η|G|
2E

Et


∑

g∈G

n2
g

n2

K−1∑

k=0

(
6γE2L2∥xg

t,k − xt∥2 + 10γη2E4L2σ2
)



+
ηKE

2
∥∇f(xt)∥2 −

η

2KE
Et


∥

∑

g∈G

ng

n

K−1∑

k=0

∇Fg(x
g
t,k)∥2


 .

(27)

Based on Lemma 4 which bounds ∥xg
t,k − xt∥2, we have

A1 ≤ 3ηγΓKEL2Et[λσγσ
2 + 900η4K2E4L2γζ2 + 30η2K2E2ζ2g

+ λfE[∥ηE∇f(xt)∥2]] + 5η3γΓKE3L2σ2 +
ηKE

2
∥∇f(xt)∥2

− η

2KE
Et


∥

∑

g∈G

ng

n

K−1∑

k=0

∇Fg(x
g
t,k)∥2




≤ ηKE(
1

2
+ 3λfηγΓKEL2)∥∇f(xt)∥2 + λ2ηKEγΓσ2

+ λ3ηKEγΓζ2 + λ4ηKEγΓζ2g

− η

2KE
Et


∥

∑

g∈G

ng

n

K−1∑

k=0

∇Fg(x
g
t,k)∥2


 .

Lemma 7. Under the assumptions and conditions in Theo-
rem 5, A2 is bounded as follows

A2 ≤η2Et


∥

∑

g∈G

ng

n

K−1∑

k=0

∇Fg(x
g
t,k)∥2




+
η2γΓΓpK

2

|St|
(1 + 10η2E2L2σ2). (28)

Proof: Recall that A2 = Et∥∆t∥2. Thus,

A2 = Et∥
∑

g∈St

1

pg|St|
· ng

n
∆g

t ∥2

= η2Et∥
∑

g∈G
I{g ∈ St}

1

pg|St|
· ng

n

K−1∑

k=0

∇Fg(x
g
t,k; ξ

g
t,k)∥2.

6

Since E[X2] = E[X − E[X]]2 + E[X]2, we know

A2 = η2Et∥
∑

g∈G

P{g ∈ St}
pg|St|

· ng

n

K−1∑

k=0

(∇Fg(x
g
t,k; ξ

g
t,k)

−∇Fg(x
g
t,k))∥2 + η2Et∥

∑

g∈G

ng

n

K−1∑

k=0

∇Fg(x
g
t,k)∥2

= η2|G|KEt

∑

g∈G

P{g ∈ St}
p2g|St|2

· n
2
g

n2

K−1∑

k=0

∥∇Fg(x
g
t,k; ξ

g
t,k)

−∇Fg(x
g
t,k)∥2 + η2Et∥

∑

g∈G

ng

n

K−1∑

k=0

∇Fg(x
g
t,k)∥2

= η2|G|KEt

∑

g∈G

1

pg|St|
· n

2
g

n2

K−1∑

k=0

∥∇Fg(x
g
t,k; ξ

g
t,k)

−∇Fg(x
g
t,k)∥2 + η2Et∥

∑

g∈G

ng

n

K−1∑

k=0

∇Fg(x
g
t,k)∥2

=
η2|G|K
|St|

Et

∑

g∈G

1

pg

∑

g∈G

n2
g

n2

∑

g∈G

K−1∑

k=0

∥∇Fg(x
g
t,k; ξ

g
t,k)

−∇Fg(x
g
t,k)∥2 + η2Et∥

∑

g∈G

ng

n

K−1∑

k=0

∇Fg(x
g
t,k)∥2.

(29)

Due to the definition of Γ and Γp, we then have

A2 ≤ η2|G|K
|St|

Γp
Γ

|G|2Et

∑

g∈G

K−1∑

k=0

∥∇Fg(x
g
t,k; ξ

g
t,k)−∇Fg(x

g
t,k)∥2

+ η2Et∥
∑

g∈G

ng

n

K−1∑

k=0

∇Fg(x
g
t,k)∥2

≤ η2K2ΓpΓ

|St|
Et∥∇Fg(x

g
t,k; ξ

g
t,k)−∇Fg(x

g
t,k)∥2

+ η2Et∥
∑

g∈G

ng

n

K−1∑

k=0

∇Fg(x
g
t,k)∥2.

Due to the definition of γ and Lemma 1 on the bounded
variance of gradient of Fg , we have

A2 ≤ η2γΓΓpK
2E2

|St|
(1 + 10η2E2L2)σ2

+ η2Et∥
∑

g∈G

ng

n

K−1∑

k=0

∇Fg(x
g
t,k)∥2.

3.4 Key Observations
From the main theorem, we can have the following obser-
vations, which inspire our proposed group formation and
sampling methods.

First, the heterogeneity ζg between the combined group
loss function fg and the global loss functions f plays a role
in convergence. With a larger heterogeneity, the convergence
will be slower. Therefore, in our proposed group formation
and group sampling schemes, we aim to reduce this hetero-
geneity. Unfortunately, the definition of ζg is not straight-
forward and we cannot directly compute it to quantify the
heterogeneity. Therefore, instead, we use the difference be-
tween data distributions to measure how analogous two loss

functions are. Concretely, we use the Coefficient of Variance
(CoV) of the labels in a group, which will be discussed in
the next section. The CoV-based grouping algorithm bridges
this observation to our system design.

Second, the larger variance of sampling vector p (thus
larger Γp) may also delay the convergence of unbiased
sampling. Due to the unbiasedness factor 1

pg|St| , any 1
pg

should not be too large, otherwise the aggregation is nu-
merically unstable: 1

pg
extremely amplifies the gradient and

ruins all previous training results. On the other hand, we
want to be able to set arbitrary p to prioritize good groups
with smaller ζg . To handle this, when we adopt unbiased
aggregation together with prioritized sampling, we will use
a normalization method (see Section 5). Note that p may
also entangle with ζg , γ, and other group-specific characters
as it decides which groups participate in the training more,
and therefore their characters affect the FL system more.

Third, to boost convergence, we need a smaller γ. We
find that γ−1 = |g|2V ar(ni

ng
) = (σc

µc
)2, where σc and µc are

the standard deviation and mean of the total data sample
number among clients within the same group. Interestingly,
γ−1 is also the square of CoV of data sample number within
the group. Γ has a similar property. Reducing γ also helps to
converge faster and smoother. We leave further considering
this in our design as one of the future works.

Note that our analysis hints that methods taking group
heterogeneity (ζg) into account may perform well in term of
convergence. This has been confirmed by our experiment re-
sults in Section 6, where our proposed method outperforms
several existing methods. FedProx [7] simply shrink the
update vector (gradient) to keep the model not too far from
the last round’s, which is ignorant to group heterogeneity.
SCAFFOLD [8] tries to correct the update direction but it
may not even know what the good direction is without a
good group due to large ζg . OUEA [15], SHARE [16] and
Fed-CBS [21] try to form good groups (to reduce ζg) but the
resulting groups are not as good as ours in the HFL setting.

4 COV BASED GROUP FORMATION

In Group-FEL, how to perform group formation is critical
since ζg plays an important role in convergence (as sug-
gested by the first key observation above). Again, note that
ζg depends on the difference between the in-group data
distributions and the global data distribution, and a good
group formation method helps to reduce ζg . Therefore, in
this section, we first discuss the possible grouping criteria
and then present our proposed grouping method.

4.1 Grouping Criteria: CoV

Based on the key observation from our convergence analy-
sis, the principle of grouping criteria should be to make the
group loss functions as similar to the global loss function
as possible (i.e., similar data distribution and smaller ζg). In
general, the properties of a loss function are closely related
to its data distributions. Therefore, our grouping criteria
aims to measure the similarity of data distributions between
group and global. We further assume global data are evenly
distributed, thus we can just focus on the data distribution
within each local group. To do so, we introduce the coefficient
of variation (CoV) of the labels in a group.

7

Here we focus on the grouping of a client set K, whose i-
th client is ci. The data label set Y contains m kinds of labels.
We define a label matrix L, where Li,j is the number of j-th
category of data samples on i-th client. Then, a grouping G
of K is a partition of K. Let Gl be the l-th group in G, which
contains all clients in this group. To compute the CoV of a
group, we only need to know the data label distributions
from users in that group, without any information of their
local data, model, nor gradient.

Ideally, we would like the distribution of every group Gl

is identical to the global distribution, i.e.,
∑

ci∈Gl
Li,j∑

ci∈Gl

∑
k∈Y Li,k

=

∑
ci∈K Li,j∑

ci∈K
∑

k∈Y Li,k
, ∀j,∀l. (30)

However, such restricted criteria might lead to infeasible
grouping. Thus, instead, we use the coefficient of variation
as the grouping criterion. For a given group g, we calculate
its coefficient of variation (CoV) in the following way

CoV (g) =
σ(g)

µ(g)
=

√
∑

j∈Y
(
ng

m −∑
ci∈g Li,j

)2

ng
. (31)

Note that the group variance can also be defined as

σ(g) =

√
∑

j∈Y
(
ng

m −∑
ci∈g Li,j

)2

m
. (32)

Recall that ng is the number of data samples in the group
and m is the number of labels (data samples types). The
reason why the variance (i.e., σ2(g)) is not suitable as the
criterion is that it is susceptible to the scale of data number.
For example, a group with a smaller total data number but
larger data distribution skew may have a smaller variance
than a group with more data but smaller distribution skew.
We may prefer the latter group but, on the contrary, the
smaller variance criterion prefers the first one. Note that
neither variance nor CoV has been considered in previous
works on client grouping at edge-based federated learning.

4.2 Group Formation Problem
The group formation problem aims to divide all clients asso-
ciated with an edge server into multiple client groups such
that the summation of CoVs of all groups is minimized. We
can use matrices to more succinctly express this grouping
problem. Suppose we have three matrices A, X , and B,
where Aji is the number of label type j that client ci pos-
sesses; Xil is the grouping decision indicator where Xil = 1
if the client ci is in the group Gl, otherwise 0; Bjl is the
number of data type j in group l. Then the group formation
problem can be formulated as the following optimization
problem:

min
X

∑

l

√
∑

j

(∑
j Bjl

m −Bjl

)2

∑
j Bjl

(33)

s.t. AX = B, (34)∑

i

Xil ≥ MinGS, ∀l, (35)

∑

l

Xil = 1, ∀i, (36)

Xil ∈ {0, 1}, ∀i,∀l. (37)

(9) before grouping

CoV Grouping @

CoV(g’1)=0.08

CoV(g’2)=0.06

(4,6)

(4,8)

(6,2)

(8,2)

(4,6)

(4,8)

(6,2)

(8,2)
CoV(g1)=0.19 CoV(g2)=0.39

(4,6)

(4,8)

(6,2)

(8,2)

(a,b) – # of samples of each type

(;) grouping 1

(<) grouping 2

Fig. 4. Example of CoV-Grouping at edge: (a) before grouping, (b) two
groups formed by grouping method 1, (c) two groups formed by grouping
method 2.

Constraint (35) is an anonymity constraint to make sure that
each group at least has MinGS clients3, while Constraint
(36) ensures that a client will be grouped into one and only
one group.

Fig. 4 illustrates a simple toy example. As shown in
Fig. 4(a), this edge server has four clients and all wants
to form a group with at least two clients. Each client has
certain amount of data samples of two label types. Though
two different grouping methods (as shown by Fig. 4(b) and
(c)) can both formulate two groups each with two clients,
the total CoVs are quite different. In our design, we would
prefer the one with lower CoVs (Fig. 4(c)).

4.3 Grouping Algorithm: CoV Grouping
Directly solving the above grouping optimization is not
easy. Note that the grouping problem with a fixed number
of groups is a variation of the k-mean clustering problem,
which is known as NP-hard [22], [23]. Therefore, we de-
sign a greedy algorithm (COV-GROUPING) to generate an
approximating solution. It generates groups one by one
until no more groups are possible. For each group, it first
randomly picks a client, then greedily adds clients one by
one. When adding a new client to the current group, it
tries every possible client and adds the one that reduces the
group CoV the most (Line 5). If no one meets this criterion
and the group size is large enough (reach MinGS), then
this group is finalized and the algorithm starts the next
group. In addition, besides checking the group size con-
straint MinGS, we also add a maximum CoV requirement
(MaxCoV) which makes sure the resulting group CoV is
smaller than MaxCoV 4. Algorithm 2 shows the details.
Theorem 8. The time complexity of Algorithm 2 is

O(|K|3|Y|), where |K| and |Y| are the number of clients
and the number of label types, respectively.

Proof: First, Line 5 is executed at most O(|K|) times.
Second, in each execution, it implicitly calls CoV () at most
O(|K|) times to try every possible client. Last, the complex-
ity of function CoV () is O(|g||Y|) = O(|K||Y|). Therefore,
the total time complexity of COV-GROUPING is O(|K|3|Y|).

3. The minimum group size MinGS can make sure that the secure
group operation can protect the model/data privacy of its clients. Here
we assume the requirement is a controllable constant for our system,
but this can be easily extended to the case where each client has its own
group size requirement.

4. This is not a hard constraint, i.e., the algorithm only tries to adding
clients until the CoV is satisfied, but sometimes it might be infeasible
to reach lower than MaxCoV , then it just gives up adding more clients
and finalize this group (Line 9 of Algorithm 2).

8

Algorithm 2 COV-GROUPING

Input: Client set K, min GS MinGS, and MaxCoV .
Output: Group set G.

1: G = ∅
2: while K ̸= ∅ do
3: Find a random c ∈ K, g = {c}, K = K\c.

▷ create a new group
4: while (CoV(g) > MaxCoV or |g| < MinGS) and

K ̸= ∅ do ▷ not meet the group requirement yet
5: Find c ∈ K that minimizes CoV(g ∪ c)
6: if CoV(g ∪ c) < CoV(g) or |g| < MinGS then
7: g = g ∪ c, K = K\c ▷ add c to current group
8: else ▷ no suitable c and enough group size
9: break ▷ finalize current group

10: G = G ∪ g ▷ add finalized group
11: return G

200 400 600 800 1000
Number of Clients

0

20

40

60

Ti
m

e
(s

)

RG
CDG
KLDG
CoVG

Fig. 5. Running time of different
grouping methods.

1 2 3 4
Avg. CoV

0.2

0.4

0.6

0.8

1.0

Av
g.

 G
ro

up
 O

ve
rh

ea
d RG

CDG
KLDG
CoVG

Fig. 6. Average CoV v.s. average
group overhead.

Given |Y| is usually a fixed small number for a given
task (e.g., 10 for CIFAR-10 [24], 35 for SpeechCommand (SC)
[25]), the time complexity becomes O(|K|3). This is cubic
to the client number associated with the edge server but
irrelevant to the data amount owned by clients.

4.4 Compared with Other Grouping Algorithms

We now compare our algorithm with two existing solutions:
clustering then distribution grouping (CDG, used by OUEA
[15]) and KLD grouping (KLDG, used by SHARE [16]),
as well as random grouping (RG). Fig. 5 shows the time
consumed by each algorithm to group different numbers of
clients. We can see that RG can group 1, 000 clients at almost
no cost (less than 0.3 seconds). CDG has similar efficiency
to RG (around 1 second). KLDG is inefficient because i) its
time complexity is O(|K|4|Y|); ii) it frequently calculates
the KLD, which needs the expensive operation floating-
point log(). On the contrary, calculating CoV only involves
addition and multiplication, which are much cheaper than
log(). Thus CoVG can group 1, 000 clients in 6 seconds.

We then compare the quality of the grouping results
of these four algorithms. Fig. 6 shows a result more di-
rectly related to our concerned question: how do different
grouping algorithms affect the learning cost and accuracy?
With the same cost (i.e., group overhead), CoVG always
gives us the best groups with lower CoV (i.e., higher IID
degree), which implies better training accuracy. Similarly, to
achieve the same level of CoV (i.e., accuracy), CoVG saves
us costs. We will present more details about this implication
by experiments in Section 6.

Besides, to visualize the differences, as shown in Fig. 7,
we use two sets of grouping results of our proposed COV-
GROUPING (CoVG) method, compared with RG, CDG, and

KLDG. From the first row of Fig. 7 (over CIFAR-10 dataset),
Note that most groups generated by RG miss some of the
labels; CDG does not significantly improve the grouping
as the clustering might be meaningless when data distri-
butions are fundamentally different; KLDG is better than
RG and CDG, but CoVG generates the most balanced
data within groups (avgCoV is minimized) while keeping
group sizes the same. This ensures that when the selected
group conducts group training and aggregation, it has the
right direction to update its group model. On the contrary,
randomly generated groups or groups from unbalanced
grouping have more inconsistent objectives with the global
model. The second row of Fig. 7 shows the results on the SC
dataset, which has more types of data. The observations are
similar to those on CIFAR-10. Overall, our COV-GROUPING
can lead to better quality (balanced label distribution) of
groups compared with other grouping methods.

5 COV-BASED GROUP SAMPLING
We now discuss our group sampling method, deployed in
the cloud as in Fig. 3, which is a probability-based sampling.
Each group g is sampled based on a probability pg . The
key problem is the sampling criteria, i.e., how to compute
the sampling probability, which groups should be sampled
more frequently, and how frequent it should be. Existing
works in FL already considered many sampling criteria to
improve the system performance in specific aspects. For
example, [26] considers both training time and gradient in
sampling to speed up the training. Since now we have the
group CoV, it is reasonable to design new sampling methods
based on CoV to improve the system performance. In this
section, we discuss the possible sampling methods and how
to better utilize them. As group heterogeneity widely exists
in HFL systems, our designs and observations here are also
applicable to other HFL systems.
5.1 Sampling Criteria
Obviously, the probability vector p should satisfy

∑
g pg =

1. Based on the sampling probability, our system select
groups in each global iteration. Let St be the selected group
set in the t-th global iteration.

Similar to our group formation method, our grouping
sampling method tends to select those groups whose data
are combined IID. Recall that CoV (g) is the CoV of the
group g, and a larger CoV (g) means a more biased data
distribution in this group. Then, we can compute p in the
following way:

pg =
w(1

CoV (g))∑
g∈G w(1

CoV (g))
, (38)

where w() can be a non-decreasing function. The rationale
behind this formula is i) w() reflects the importance of each
group but CoV means how bad a group is so we should
inverse it in w(); pg is the probability so it is in the format
of w()/

∑
w() (so all of them sum to 1). We find that the

choice of w() also has an impact on the result. We consider
three choices5: w(x) = x, x2, and ex

2

, and use RCoV, SRCoV

5. We choose these three functions, since they amplify the impact of
CoV from less to more: the first differs but not much from random
selection; the last is close to always selecting the groups with the
top CoVs; the middle one is between them. Although one may more
elaborately select the function, we simply choose these to show how
the learning result varies w.r.t. the sampling function, and our results
next confirm that they are at least sufficient for our purpose.

9

0 2 4 6 8
Groups

0
100
200
300
400
500
600
700

Di
st

rib
ut

io
n

0 2 4 6 8
Groups

0

200

400

600

800

1000

Di
st

rib
ut

io
n

0 2 4 6 8
Groups

0

200

400

600

800

1000

Di
st

rib
ut

io
n

0 2 4 6 8
Groups

0

200

400

600

800

Di
st

rib
ut

io
n

(a) RG, avgCoV=1.03 (b) CDG, avgCoV =1.01 (c) KLDG, avgCoV =0.64 (d) CoVG, avgCoV =0.54

0 2 4 6 8
Groups

0

1000

2000

3000

4000

5000

Di
st

rib
ut

io
n

0 2 4 6 8
Groups

0
1000
2000
3000
4000
5000
6000
7000

Di
st

rib
ut

io
n

0 2 4 6 8
Groups

0
1000
2000
3000
4000
5000
6000

Di
st

rib
ut

io
n

0 2 4 6 8
Groups

0
1000
2000
3000
4000
5000
6000

Di
st

rib
ut

io
n

(e) RG, avgCoV =1.40 (f) CDG, avgCoV =1.59 (g) KLDG, avgCoV =1.07 (h) CoVG, avgCoV =1.00
Fig. 7. Grouping results and achieved average group CoV (avgCoV) of RG, CDG [15], KLDG [16], and CoVG for either CIFAR-10 [(a)-(d)] or Speech
Command [(e)-(h)]. Here, each block of color represents one type of data. Blocks represents different types of data even they have the same color.
We set MinGS=5 for CIFAR-10 and MinGS=15 for Speech Command. For CoVG, MaxCoV =1.0.

and ESRCoV to denote them. Such methods will be used as
SAMPLING-PROB(G) in Algorithm 1 to generate p.

Fig. 8 shows the accuracy achieved by these three sam-
pling methods. Overall, the more we emphasize CoV in
sampling, the smoother and faster the convergence is. In
this set of experiments, we select 12 groups among 60 client
groups based on their CoV values in each round. In general,
the more we emphasize CoV, the less frequently those
groups with larger CoV are sampled, hence less diverse the
sampled groups are during the whole training process.

For example, an interesting detail is that in ESRCoV, the
top 3 groups occupy more than 92% (top 5 have more than
99%) sampling probability, while in ERCoV the top 6 groups
have a probability around 10% each. Thus, ESRCoV only
uses 25% client groups (data) to achieve better accuracy than
the other methods which uses more client groups.

This seems contradict better performance with more
data. But the key reason is that those groups with larger CoV
values can have a smaller or even negative impact on con-
vergence as shown in our theoretical analysis. Such results
show a similar implication as the second key observation,
i.e., more frequently sampled groups tend to dominate the
characters of the whole HFL system. Though we yet can not,
and it is hard to rigorously confirm this conjecture. This also
confirms that the CoV is capable of properly capturing the
distribution skew. In our experiments in Section 6, we use
ESRCoV sampling as our default CoV sampling method for
our methods, since it has the best performance.

5.2 Regrouping Strategy

If we would like to utilize the remaining data in those
client groups with larger CoV values, one possible solution
is regrouping clients (rerunning the group formation algo-
rithm) after a certain number of global iterations (denoted
as regroup interval). In that case, our design of randomly
selecting the first client for each group in COV-GROUPING
becomes critical and useful. Each time of regrouping can
generate different client groups, therefore, giving chances
for different clients to be selected during the group sam-
pling. It is obvious that there is trade-off among regroup
interval, grouping overhead, and performance gain. We will

later show that a smaller regroup interval indeed speeds up
convergence by experiments in Section 6.5.
5.3 Handling the Unbiased Factor
As aforementioned in Section 3, Γp or (1

pg
) can be infinitely

large especially when w() amplifies the impact of CoV on
sampling and the unbiasedness factor is introduced. Mean-
while, to prioritize the good groups, we hope to assign them
a much higher probability (as shown in the comparison
of different w()). Therefore, when we need to adopt the
two mechanisms at the same time, the model is likely to
diverge. To avoid catastrophic numerical instability, we will
use stabilized aggregation, by normalizing the weights in
the following way

weight(g) =

1
pg|St|

ng

n∑
g∈St

1
pg|St|

ng

n

. (39)

Such weights will replace ng

nt
at Line 15 of Algorithm 1. Note

that we cannot guarantee that the aggregation is still unbi-
ased after using this normalization. Thus, there is always a
trade-off. In addition, when the number of selected groups
|St| is close to or even larger than the number of good client
groups we have, we will have to select some groups with
small pg , then they will dominate the aggregation because
they have large 1

pg
. Therefore, the selection of |St| needs to

be carefully set in practice. This can be done before starting
the training, by peeking at the grouping result (the sampling
probability), as we always have it prior to training.
6 PERFORMANCE EVALUATIONS

In this section, we report detailed performance evaluations
of our proposed GROUP-FEL method via experiments.

6.1 Experiments Setup
Baselines: Upon the selection of baselines, we consider the
following three types of related methods: training-based
methods (FedProx [7] and SCAFFOLD [8]), grouping meth-
ods (CDG from OUEA [15], KLDG from SHARE [16] and
QCID from Fed-CBS [21]), and a clustering method for
personalized FL (FedCLAR [13]). Classical FedAvg [4] is also
included for reference. Note that the reason why we include
FedCLAR is to show that personalized FL is not suitable for
training a good global model. CDG and KLDG are originally

10

0.0 0.2 0.4 0.6 0.8 1.0
Cost 1e6

0.3

0.4

0.5

0.6
Ac

cu
ra

cy

Random
RCoV
SRCoV
ESRCoV

Fig. 8. Different sampling methods: RCoV,
SRCoV, ESRCoV & Random.

0 10 20 30 40 50
Data/Client Number

0

10

20

30

40

50

Ti
m

e
(s

)

CIFAR Training
CIFAR Backdoor Detection
CIFAR SecAgg
CIFAR SCAFFOLD SecAgg
SC Training
SC Backdoor Detection
SC SecAgg
SC SCAFFOLD SecAgg

Fig. 9. Overhead measurement over Rasp-
berry PI.

0 50 100 150 200
Global Round

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Ac
cu

ra
cy FedAvg

FedProx
SCAFFOLD
Group-FEL
OUEA
SHARE
FedCLAR

Fig. 10. Accuracy vs iteration - all methods
over CIFAR-10.

designed for edge association in HFL, we adopt their basic
ideas and port them to group formation algorithms. QCID
is based on centralized FL so it originally forms one single
subset of all clients. We adopt it into our HFL scenario by
letting edge servers sample desired number of groups from
their associated clients, separately. Each group is generated
based on the QCID sampling method. For a fair compari-
son, we tune all grouping algorithms so that they tend to
generate similar group sizes.

Datasets and ML Models/Tasks: We use CIFAR-10 [24],
Fashion-MNIST [27], and Speech Commands (SC) [25] as
our training datasets. Fashion-MNIST and CIFAR-10 are
popular image classification datasets containing 10 types of
pictures. For those dataset, a 1-block and a 3-block ResNet
are used to represent light and heavy load tasks vision
tasks. The Speech Commands dataset contains 35 types of
audio commands and is used for command recognition. For
this task, we adopt a 5-layer convolutional neural network
(CNN) that is easy to train on RPi to represent lightweight
audio tasks. (as shown in Fig. 9). Both image classification
and audio recognition are typical edge AI applications.

Total Cost Emulation: As mentioned in Section 2.3,
we evaluate the total learning costs based on Equ. (5). To
describe the cost of group operations more accurately, we
conduct group-based FEL experiments on RPi 4 devices
with both CIFAR10 and SC to extract Og() and Hi() ac-
cording to the collected measurements. Here, all costs are
measured by time. As shown in Fig. 9, the original version
of secure aggregation (SecAgg) and SCAFFOLD (+SecAgg)
[8] are the most costly operation. We use them to estimate
different quadratic cost functions for each method and then
emulate the costs of group operations in experiments. Other
types of group operations can be integrated in the future.

HFL Environment: All training and testing of FL models
are performed in a virtual environment developed by our
group on a server with 40 cores, 512 GB RAM, 8 × NVIDIA
Tesla V100. The total costs are computed using Og() and
Hi() according to the grouping/sampling methods and
generated results.

6.2 Performance of Group-FEL

We first test the performance of our design (Group-FEL)
with different values of the key hyperparameter MaxCoV
and different data heterogeneity (i.e., α). We split CIFAR-
10 data to 300 clients with 20 to 200 (normal distribution,
restricted by the available data of CIFAR-10) data entries
each. On each client, the labels follow the Dirichlet distribu-

TABLE 1
Performance of Group-FEL: Group Size (GS), Group CoV, and

Accuracy for different α and MaxCoV .

α MaxCoV GS [min,max](avg) Avg. CoV Accu

0.1
0.1 [6, 19](10.96) 0.28 56.68%
0.5 [5, 11](6.13) 0.43 59.80%
1.0 [5, 6](5.03) 0.54 60.56%

0.5
0.1 [5, 11](7.66) 0.19 64.11%
0.5 [5, 9](5.23) 0.25 63.40%
1.0 [5,5](5.00) 0.29 65.02%

1.0
0.1 [5, 19](6.95) 0.15 65.08%
0.5 [5, 6](5.02) 0.20 64.85%
1.0 [5, 5](5.00) 0.20 64.45%

tion with parameter α6. We use three edge servers and each
of them has 100 clients.

The budget is set as 106 unit, which is sufficient for
the model to converge. Table 1 shows the detailed perfor-
mances, including the range and average of group sizes
generated, the average group CoV , and the achieved ac-
curacy, when K = 5, E = 2, and MinGS = 5. Clearly, with
larger MaxCoV (that allows more skewed distributions),
our method generates smaller groups with larger group
CoV . Note that smaller group CoV (more balanced data)
does not necessarily lead to higher accuracy as it may
require larger group sizes and hence higher overhead. When
the data is more IID (larger α), smaller MaxCoV leads to
better accuracy because we can now have more IID groups
with small sizes. However, when the data is skewed, larger
MaxCoV may be better. Overall, with less skewed data
(larger α), our method can achieve better accuracy.

We then test our method for different group round K
and local round E with fixed α = 0.1 (so each client mainly
has around 1-3 types of data) and MaxCoV = 0.5. From
Table 2, we can see that although higher K and E generally
leads to lower accuracy, which is a nature of FL as suggested
by SHARE [16], our method still outperforms hierarchical
FedAvg in all cases. Comparison with more baselines are
presented in the next subsection.

6.3 Comparison with Existing Methods
Next, we compare our method with the selected baselines,
classical FedAvg [4], FedProx [7], SCAFFOLD [8], OUEA
[15], SHARE [16], and FedCLAR [13]. For fairness, they
are all modified to a hierarchical version (if not originally)
with uniform group sampling. FedAvg, FedProx, and SCAF-
FOLD use random grouping, while FedCLAR uses random
grouping at the beginning and then performs its clustering

6. This is adopted by many previous works on non-IID FL, such as
[28]. In general, smaller α means more skewed data.

11

0.0 0.2 0.4 0.6 0.8 1.0
Cost 1e6

0.3

0.4

0.5

0.6
Ac

cu
ra

cy FedAvg
FedProx
SCAFFOLD
Group-FEL
OUEA
SHARE
FedCLAR

Fig. 11. Accuracy vs cost - CIFAR10.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Cost 1e5

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy FedAvg

FedProx
SCAFFOLD
Group-FEL
OUEA
SHARE
FedCLAR

Fig. 12. Accuracy vs cost - Fashion-MNIST.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Cost 1e5

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

FedAvg
FedProx
SCAFFOLD
Group-FEL
OUEA
SHARE
FedCLAR

Fig. 13. Accuracy vs cost - SC.

TABLE 2
Accuracy of Group-FEL with different K and E.

K E Group-FEL FedAvg

5
2 59.0% 55.3%
5 59.1% 54.2%
10 56.7% 54.5%

10 2 59.3% 55.3%
5 57.8% 54.7%
10 56.5% 52.7%

20 2 58.8% 53.5%
5 55.6% 54.0%
10 51.5% 50.1%

method at a specific round. OUEA uses its CDG algorithm
(Algorithm 1 in [15]) and SHARE uses its KLD-based group-
ing. QCID is not included here since it inherently creates
and samples different groups in each round. Later, it will be
compared with our re-grouping method in Section 6.5.

Fig. 10 shows the results of accuracy over global itera-
tions on CIFAR-10. We can see that our method outperforms
all baselines while the baselines do not differ much from
each other. Note that the accuracy of FedCLAR drops after
clustering since it is designed for personalized FL and is
not suitable for training the global model. Fig. 11 shows the
same results over the corresponding training cost. Clearly,
our method advances even more in this measurement. With
the same training cost, our method can achieve significantly
higher accuracy. The reason is that FedProx and SCAF-
FOLD demand more computation (both) and communica-
tion (SCAFFOLD) in each round; OUEA and SHARE, even
though we tune their group size, still generate some costly
groups as they do not control the group size. Compared
with Fig 10, Fig. 11 can illustrate the critical advance of our
proposed method over existing FL solutions more clearly.

Fig. 12 shows the results from similar experiments over
the Fashion-MNIST. All the baselines behave similarly on
Fashion-MNIST as they do on CIFAR-10. Two slight dif-
ference are i) Fashion-MNIST is a simpler task so the dif-
ference between our method and others are not that large
now; ii) the accuracy of FedCLAR drops much slower after
clustering. We also conduct similar experiments over the
Speech Command (SC) dataset, in which there are 35 types
of commands. We set α = 0.01, which means the data on
each client is extremely skewed: the data on each client
are mainly dominated by less than 5 types of data. We set
MinGS = 15 for all and no MaxCoV constraint. Fig. 13
shows the results. Clearly, the convergence is unstable due
to the serious inconsistency (large ζ). In general, we can
observe similar results as those on CIFAR-10.

0.0 0.2 0.4 0.6 0.8 1.0
Cost 1e6

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

CoVG+RS
RG+CoVS
CoVG+CoVS
KLDG+RS
KLDG+CoVS

Fig. 14. Different grouping and sampling methods.

6.4 Impacts of Group Formation and Group Sampling

Next, we investigate the impacts of group formation and
group sampling in our proposal methods. Fig. 14 shows dif-
ferent combinations of group formation methods (random
grouping (RG), KLD-based grouping (KLDG), and our pro-
posed CoV grouping (CoVG)) and group sampling methods
(random sampling (RS) and our proposed CoV sampling
(CoVS)). CDG is omitted as it does not show a significant
difference from RG. The key observation from this result is
the advantage of the proposed methods is more clear when
both CoVG and CoVS are used together. When only CoVG
is adopted and random sampling is used, the good groups
are not prioritized so they do not have much impact on
the learning result. Compared with the performance of our
method (CoVG+CoVS), we can see CoVS indeed adding a
significant advantage over CoVG. When CoVS is adopted
alone, the quality of prioritized groups is not fundamentally
better than others due to poor grouping. We repeat this set of
experiments on the SC dataset and observe similar results.
Therefore, our recommendation is to use both CoVG and
CoVS as we did in our GROUP-FEL.

6.5 Impacts of Re-Grouping

Finally, as discussed in Section 5.2, regrouping helps to
speed up convergence, thus we evaluate our regrouping
strategy as well. Fig. 15 shows the results of regrouping
when there are 100, 200, and 300 clients in the system,
respectively. Fig. 15(a) clearly shows that a smaller re-group
interval leads to faster convergence. However, smaller re-
group interval also add more grouping overhead. Fig. 15(b)
and Fig. 15(c) show similar results, but in comparison,
we can see that when there are more clients (hence more
groups) available, the benefit of re-grouping decreases. This
is because when there are fewer data available, the diversity
is critical for the model performance. On contrary, when the
number of clients is large, the data is already diverse enough
even without re-grouping and re-selection. In addition, we

12

0 2 4
Cost 1e5

0.2

0.4

0.6

0.8
Gl

ob
al

 R
ou

nd

1
10
50
Inf
QCID

0 2 4
Cost 1e5

0.2

0.4

0.6

0.8

Gl
ob

al
 R

ou
nd

1
10
50
Inf
QCID

0 2 4
Cost 1e5

0.2

0.4

0.6

0.8

Gl
ob

al
 R

ou
nd

1
10
50
Inf
QCID

(a) With 100 clients (b) With 200 clients (c) With 300 clients
Fig. 15. Impacts of re-grouping (vs QCID) with different re-group intervals (curves with labels of 1, 10, 50 and Inf (i.e., without re-grouping)) and
different number of clients (i.e., (a) 100, (b) 200, (c) 300).

also plot the grouping method based on QCID sampling
in Fig. 15. Compared to our method (especially interval=1),
QCID is not as stable and generally performs slightly worse.

7 RELATED WORKS
7.1 Non-IID in Federated Learning

Recently, the Non-IID problem in FL has been well-studied
in prior research such as [6]–[11], [13], [14], [29]. These
works can be categorized into two types based on how they
address statistical heterogeneity and their corresponding
objectives. The first type of work, such as [6]–[8], aims
to reduce the negative impact of objective inconsistency
caused by skewed data and obtain a global model that
performs well in the overall task (where there is no data
distribution skew). The other type of work recognizes that
heterogeneity reflects the different natures and demands
of different clients, thus they focus on training multiple
personalized models designed for different users, instead
of training a good global model. This kind of method is
also called personalized FL. In general, if the goal is to
extend the available data to generate a general model, the
first approach may be used. If the goal is to improve the
immediate user experience, the personalized approach may
be more suitable.

To train a global model that works well for the overall
task, we need to strive to remedy the negative impact
of inconsistent local objectives. The pioneer work mainly
uses training-based methods, such as augmenting the data,
modifying the loss function, and changing the descent di-
rection. Zhao et al. [6] utilize a globally shared dataset to
bootstrap and reduce the label distribution skew among
clients. FedProx [7] limits the divergence of local training
from the last global model to mitigate inaccurate updates.
SCAFFOLD [8] records the direction of local and global
gradient to re-direct updates to an estimated correct direc-
tion. IGFL [30] leverages both individual and group updates
to mimic the distributions and digests them in both client
and server optimization, thereby improving the ability to
deal with heterogeneity. CCVR [12] calibrates the classifier
layer using sampled virtual representations, while DFL [31]
tries to separate global and local-only features to perform
alternative local-global optimization for both generalized
adaption and personalized performance. Fed-CBS [21] also
proposes a heterogeneity-aware client sampling mechanism
to reduce class-imbalance of the grouped dataset from the
intentionally selected clients aiming to facilitate conver-
gence. For personalized FL, as suggested by [32], there are

many methods, including but not limited to transfer learn-
ing [13], meta-learning [33], knowledge distillation [34], and
clustering [13].

This paper focuses on the first type of approach to
train a global model and our proposed method outperforms
existing methods in the HFL environment. We choose the
two most popular methods FedProx and SCAFFOLD as part
of the baselines in experiments. Although personalized FL
methods do not align well with our target scenario, we also
include FedCLAR [13] in experiments to confirm that this
type of solution is not suitable in our considered scenario.

7.2 Hierarchical Federated Learning (HFL)

HFL has been studied recently due to advances in the
scalability and privacy protection of FL. A cloud-edge-client
HFL framework has been studied in [2] and it gives the con-
vergence analysis of HFL. Wang et al. [35] also considered
cluster structure formation in HFL where edge servers are
grouped in different clusters for model aggregation. While
both [2] and [35] provide the HFL convergence analysis,
their analysis is different from ours, since they do not
consider (1) group sampling (i.e., the sampling fraction for
each group) and (2) group characters (such as the variance
of data number among clients and groups).

To handle the non-IID problem in HFL, OUEA [15]
and SHARE [16] consider the client assignment problem:
they try to assign clients to edge servers such that the
clients associated with each edge server have a balanced
data distribution when virtually combined. OUEA [15] first
clusters similar clients together and then distributes them to
different groups so that the data distribution inside each
group tends to be IID. OUEA also offers a convergence
analysis, but similar to [2], they do not consider group
sampling and some group-specific characters. Furthermore,
OUEA requires the loss functions to be convex (which is
not true for neural networks) while our analysis does not.
SHARE [16] also considers data distribution among edge
aggregators and optimizes communication cost during the
client-edge assignment. It uses Kullback–Leibler divergence
(KLD) to measure the IID degree among edge aggregators.
Both OUEA and SHARE consider each edge server as one
single aggregator (i.e., aggregating one client group) and do
not control the group size. In the experiments, we port their
assignment policy to the group formation and re-implement
their algorithms for comparison with our grouping method.
FedGroup [36] also considers a group-based FL where
clients are grouped based on their local model similarities.

13

It constructs a data-driven distance measure to learn the
proximities between clients’ local optimizations and then
determine the grouping and the goals of each group.

All of the works above consider the hierarchical structure
and/or the communication cost, but none of them takes into
account the overhead incurred by group operations (especially
those for security and privacy protection operations). As a
result, they do not limit the number of clients associated
with an edge aggregator (within a group), which may not be
cost-efficient, as shown in Fig. 2. Additionally, some efforts
focused on privacy protection and participant selection in
HFL. Wainakh et al. [37] pointed out the gain of HFL on
privacy enhancement. Yang et al. [38] proposed a compres-
sion mechanism and gradient clipping method in an HFL
architecture to reduce communication overhead and protect
privacy. Wei et al. [39] studied the participant selection
problem of a multi-model HFL. Our work instead focuses
on group formation and sampling in a group-based HFL to
reduce the total learning cost (including overhead caused by
group operations).
7.3 Performance Measurement
Most existing works measure convergence by iteration,
which is not effective in many cases. For example, some
algorithms [7], [8] require more computation and/or com-
munication in each round to achieve faster convergence re-
garding global iterations but may be slower when measured
by wall clock time and/or resource cost. Therefore, more re-
alistic measurements for FL systems have been investigated
to satisfy different application requirements. Luo et al. [26]
seek to reduce the training wall clock time. They propose a
new convergence upper bound for arbitrary client selection
probabilities and generate a non-convex training time mini-
mization problem. Their approach significantly reduces the
convergence time to achieve the same target loss compared
to several baselines regarding the wall-clock time. Yang et
al. [40] study the energy consumption optimization problem
for battery-sensitive devices and the proposed method can
save up to 59.5% energy. Some works [41], [42] notice that
communication traffic may also be a potential bottleneck
for cross-device FL systems, and hence seek to reduce the
bandwidth requirement by gradient/model compression.
They compare the convergence rates by loss over total
network traffic. There are also works [43]–[47] focusing
on minimizing both training and communication costs for
training multiple FL models in a shared edge cloud. In this
paper, we consider all costs incurred by training and group
operations and unify the latter into one quadratic function.
We have evaluated the performance of FL systems in terms
of accuracy over this generally defined cost.
8 CONCLUSION

In this paper, we first tackle the challenge of group forma-
tion in group-based HFL, which is critical due to the widely
adopted group operations (for privacy and security) and yet
remains unresolved. Particularly, we demonstrate through
both theoretical analysis and empirical results that the group
size and group data distribution are key factors for the
group formation in group-based HFL and have a significant
impact on its convergence and total cost. To address this, we
design a greedy grouping algorithm based on group CoV
to reduce group size while maintaining the relatively IID

group data. In addition, group sampling methods for CoV-
aware groups are also proposed and analyzed. Through
extensive experiments, we show that current popular FL
algorithms do not perform well in the context of HFL, and
our methods outperform them across various scenarios. This
work contributes valuable insights and practical solutions
to the often-overlooked challenges associated with group-
based hierarchical federated learning at edge systems. We
believe that our solution can support more intelligent appli-
cations through edge computing and mobile AI.

Looking ahead, our future work aims to enhance the
proposed group formation and sampling strategies. This
involves exploring ways (1) to incorporate the parameter γ,
related to the CoV of data sample amounts among clients,
(2) to ensure fairness among clients and data representation
within the framework of group-based HFL. This continued
exploration is anticipated to further refine the efficacy and
fairness of our proposed methods, offering advancements in
the field of hierarchical federated learning.
REFERENCES

[1] J. Liu, X. Wei, X. Liu, H. Gao, and Y. Wang, “Group-based hier-
archical federated learning: Convergence, group formation, and
sampling,” in Proc. of ICPP, 2023.

[2] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in Proc. of IEEE ICC, 2020.

[3] K. Bonawitz, et al., “Towards federated learning at scale: System
design,” Proc. of MLSys, 2019.

[4] B. McMahan, et al., “Communication-efficient learning of deep
networks from decentralized data,” in Proc. of AISTATS, 2017.

[5] K. Bonawitz, et al., “Practical secure aggregation for privacy-
preserving machine learning,” in Proc. of ACM CCS, 2017.

[6] Y. Zhao, M. Li, et al., “Federated learning with non-IID data,” arXiv
preprint arXiv:1806.00582, 2018.

[7] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and
V. Smith, “Federated optimization in heterogeneous networks,”
Proc. of MLSys, 2020.

[8] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated
learning,” in Proc. of ICML, 2020.

[9] T. Yu, E. Bagdasaryan, and V. Shmatikov, “Salvaging federated
learning by local adaptation,” arXiv arXiv:2002.04758, 2020.

[10] F. Chen, M. Luo, Z. Dong, Z. Li, and X. He, “Federated meta-
learning with fast convergence and efficient communication,”
arXiv preprint arXiv:1802.07876, 2018.

[11] A. Ghosh, J. Hong, D. Yin, and K. Ramchandran, “Robust fed-
erated learning in a heterogeneous environment,” arXiv preprint
arXiv:1906.06629, 2019.

[12] M. Luo, et al., “No fear of heterogeneity: Classifier calibration for
federated learning with non-IID data,” Proc. of NeurIPS, 2021.

[13] R. Presotto, G. Civitarese, and C. Bettini, “Fedclar: Federated clus-
tering for personalized sensor-based human activity recognition,”
in Proc. of IEEE PerCom, 2022.

[14] Y. Li, F. Li, et al., “Power of redundancy: Surplus client scheduling
for federated learning against user uncertainties,” IEEE Trans. on
Mobile Computing, vol. 22, no. 9, pp. 5449–5462, 2023.

[15] N. Mhaisen, et al., “Optimal user-edge assignment in hierarchical
federated learning based on statistical properties and network
topology constraints,” IEEE Trans. on Network Science and Engineer-
ing, vol. 9, no. 1, pp. 55–66, 2021.

[16] Y. Deng, F. Lyu, et al., “SHARE: Shaping data distribution at edge
for communication-efficient hierarchical federated learning,” in
Proc of IEEE ICDCS, 2021.

[17] T. D. Nguyen, P. Rieger, et al., “Flame: Taming backdoors in
federated learning,” Cryptology ePrint Archive, 2021.

[18] H. Yang, M. Fang, and J. Liu, “Achieving linear speedup with
partial worker participation in non-IID federated learning,” Proc.
of ICLR, 2021.

[19] L. Wang, Y. Guo, T. Lin, and X. Tang, “Client selection in non-
convex federated learning: Improved convergence analysis for
optimal unbiased sampling strategy,” arXiv arXiv:2205.13925, 2022.

[20] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the
convergence of FedAvg on non-IID data,” in Proc. of ICLR, 2019.

14

[21] J. Zhang, A. Li, et al., “Fed-CBS: A heterogeneity-aware client
sampling mechanism for federated learning via class-imbalance
reduction,” in Proc. of ICML, 2023.

[22] M. Mahajan, et al., “The planar k-means problem is NP-hard,”
Theoretical Computer Science, vol. 442, pp. 13–21, 2012.

[23] D. Aloise, et al., “NP-hardness of Euclidean sum-of-squares clus-
tering,” Machine learning, vol. 75, pp. 245–248, 2009.

[24] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” Technical Report, U. of Toronto, 2009.

[25] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition,” ArXiv e-prints, Apr. 2018.

[26] B. Luo, W. Xiao, S. Wang, J. Huang, and L. Tassiulas, “Tackling
system and statistical heterogeneity for federated learning with
adaptive client sampling,” in Proc. of IEEE INFOCOM, 2022.

[27] H. Xiao, “Fashion-MNIST: A novel image dataset for benchmark-
ing machine learning algorithms,” arXiv arXiv:1708.07747, 2017.

[28] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of
non-identical data distribution for federated visual classification,”
arXiv preprint arXiv:1909.06335, 2019.

[29] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling
the objective inconsistency problem in heterogeneous federated
optimization,” Proc. of NeurIPS, 2020.

[30] H. Huang, F. Shang, Y. Liu, and H. Liu, “Behavior mimics distri-
bution: Combining individual and group behaviors for federated
learning,” in Proc. of IJCAI, 2021.

[31] Z. Luo, Y. Wang, et al.,“Disentangled federated learning for tack-
ling attributes skew via invariant aggregation and diversity trans-
ferring,” arXiv preprint arXiv:2206.06818, 2022.

[32] A. Z. Tan, et al., “Towards personalized federated learning,” IEEE
Trans. on Neural Networks and Learning Systems, 2022.

[33] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized fed-
erated learning: A meta-learning approach,” arXiv preprint
arXiv:2002.07948, 2020.

[34] J. Zhang, S. Guo, X. Ma, H. Wang, W. Xu, and F. Wu, “Parame-
terized knowledge transfer for personalized federated learning,”
Proc. of NeurIPS, 2021.

[35] Z. Wang, H. Xu, J. Liu, H. Huang, C. Qiao, and Y. Zhao, “Resource-
efficient federated learning with hierarchical aggregation in edge
computing,” in Proc. of IEEE INFOCOM, 2021.

[36] M. Duan, D. Liu, et al., “FedGroup: Efficient federated learning
via decomposed similarity-based clustering,” in Proc. of IEEE
ISPA/BDCloud/SocialCom/SustainCom, 2021.

[37] A. Wainakh, A. S. Guinea, T. Grube, and M. Mühlhäuser, “Enhanc-
ing privacy via hierarchical federated learning,” in Proc.of IEEE
EuroS&PW, 2020, pp. 344–347.

[38] H. Yang, “H-FL: A hierarchical communication-efficient and
privacy-protected architecture for federated learning,” arXiv
preprint arXiv:2106.00275, 2021.

[39] X. Wei, J. Liu, X. Shi, and Y. Wang, “Participant selection for
hierarchical federated learning in edge clouds,” in Proc. of IEEE
NAS, 2022.

[40] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei,
“Energy efficient federated learning over wireless communication
networks,” IEEE Trans. on Wireless Communications, vol. 20, no. 3,
pp. 1935–1949, 2020.

[41] J. Hamer, M. Mohri, and A. T. Suresh, “FedBoost: A
communication-efficient algorithm for federated learning,” in
Proc. of ICML, 2020.

[42] H. Gao, A. Xu, and H. Huang, “On the convergence of
communication-efficient local sgd for federated learning,” in Proc.
of AAAI, vol. 35, no. 9, 2021, pp. 7510–7518.

[43] X. Wei, J. Liu, and Y. Wang, “Joint participant selection and
learning scheduling for multi-model federated edge learning,” in
Proc. of IEEE MASS, 2022.

[44] X. Wei, J. Liu, and Y. Wang, “Joint participant selection and
learning optimization for federated learning of multiple models
in edge cloud,” J. of Computer Science and Technology, vol. 38, no. 4,
pp. 754–772, 2023.

[45] X. Wei, L. Fan, et al., “Quantum assisted scheduling algorithm
for federated learning in distributed networks,” in Proc. of IEEE
ICCCN, 2023.

[46] X. Wei, L. Fan, et al., “Hybrid quantum-classical benders’ de-
composition for federated learning scheduling in distributed net-
works,” IEEE Trans. on Network Science and Engineering, to appear.

[47] X. Wei, K. Ye, et al., “Joint Participant and Learning Topology
Selection for Federated Learning in Edge Clouds,” IEEE Trans. on
Parallel and Distributed Systems, vol. 35, no. 8, pp. 1456-1468, 2024.

Jiyao Liu is a Ph.D. student at the Department
of Computer and Information Sciences at Tem-
ple University. He received his B.E. degree in
Information Security from North China University
of Technology in 2020. His research interests
include AI, security, and edge computing.

Xuanzhang Liu received the master degree in
computer science from University of Delaware in
2020. He is currently pursuing his PhD degree
at the Department of Computer and Information
Science, Temple University. His main research
interests include edge computing, blockchain,
and federated learning.

Xinliang Wei (S’21-M’23) is an Assistant Pro-
fessor at Shenzhen Institute of Advanced Tech-
nology, Chinese Academy of Sciences. He holds
a Ph.D. in Computer and Information Sciences
from Temple University, USA in 2023. He re-
ceived his M.S. and B.E. degrees both in Soft-
ware Engineering from SUN Yat-sen University,
Guangzhou, China in 2016 and 2014, respec-
tively. His research interests include edge com-
puting, federated learning, reinforcement learn-
ing, and Internet of Things. He is a recipient of

Outstanding Research Assistant from College of Science and Technol-
ogy and Scott Hibbs Future of Computing Award from Department of
Computer & Information Sciences at Temple University.

Hongchang Gao is an Assistant Professor in the
Department of Computer and Information Sci-
ences at Temple University. He holds a Ph.D. in
Computer Engineering from University of Pitts-
burgh, an MEng in Computer Science from Bei-
hang University, and a B.S. in Mathematics and
Applied Mathematics from Ocean University of
China. His research interests include machine
learning, optimization, and data mining. He was
selected for AAAI 2023 New Faculty Highlights,
and has served as Associate Editor for Journal

of Combinatorial Optimization.

Yu Wang (S’02-M’04-SM’10-F’18) is a Profes-
sor and Chair of the Department of Computer
and Information Sciences at Temple University.
He holds a Ph.D. from Illinois Institute of Tech-
nology, an MEng and a BEng from Tsinghua
University, all in Computer Science. His research
interest includes wireless networks, smart sens-
ing, and mobile computing. He has published
over 300 papers in peer reviewed journals and
conferences. He is a recipient of Ralph E. Powe
Junior Faculty Enhancement Awards from Oak

Ridge Associated Universities (2006), Outstanding Faculty Research
Award from College of Computing and Informatics at the University of
North Carolina at Charlotte (2008), Fellow of IEEE (2018), and ACM Dis-
tinguished Member (2020). He has served as Associate Editor for IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions on
Cloud Computing, among others.

1

SUPPLEMENTARY MATERIAL

In this supplementary material, we will formally prove Lemmas 1 to 4, which are used in the proof of Lemmas 6 and 7.

Proof of Lemma 1
First, based on the definition, we have

∥∇Fg(x; ξg)−∇Fg(x)∥2 = ∥
∑

i∈g

ni

ng

E−1∑

e=0

∇fi(x
i
e; ξ

i
e)−

∑

i∈g

ni

ng

E−1∑

e=0

∇fi(xe)∥2 = ∥
∑

i∈g

ni

ng

E−1∑

e=0

(∇fi(x
i
e; ξ

i
e)−∇fi(xe))∥2

≤ |g|E
∑

i∈g

n2
i

n2
g

E−1∑

e=0

∥∇fi(x
i
e; ξ

i
e)−∇fi(x

i
e) +∇fi(x

i
e)−∇fi(xe)∥2

≤ |g|E
∑

i∈g

n2
i

n2
g

E−1∑

e=0

(σ2 + L2∥xi
e − xe∥2). (40)

Regarding ∥xi
e − xe∥2, we have

∥xi
e − xe∥2 = ∥xi

e−1 − η∇fi(x
i
e−1; ξ

i
e−1)− (xe−1 − η∇fi(xe−1))∥2 = ∥xi

e−1 − xe−1 − η(∇fi(x
i
e−1; ξ

i
e−1)−∇fi(xe−1))∥2

= ∥xi
e−1 − xe−1 − η(∇fi(x

i
e−1; ξ

i
e−1)−∇fi(x

i
e−1) +∇fi(x

i
e−1)−∇fi(xe−1))∥2

≤ (1 +
1

2E − 1
)∥xi

e−1 − xe−1∥2 + 2Eη2∥∇fi(x
i
e−1; ξ

i
e−1)−∇fi(x

i
e−1) +∇fi(x

i
e−1)−∇fi(xe−1)∥2

≤ (1 +
1

2E − 1
)∥xi

e−1 − xe−1∥2 + 2Eη2σ2 + 2Eη2L2∥xi
e−1 − xe−1∥2

≤ (1 +
1

2E − 1
+ 2Eη2L2)∥xi

e−1 − xe−1∥2 + 2Eη2σ2.

When η ≤ 1√
6(E−1)(2E−1)L2

(as Eq. (19)), so η ≤ 1√
2(E−1)(2E−1)L2

(i.e., 1 + 1
2E−1 + 2Eη2L2 ≤ 1 + 1

E−1). Thus we have

∥xi
e − xe∥2 ≤ (1 +

1

E − 1
)∥xi

e−1 − xe−1∥2 + 2Eη2σ2 ≤ 6∥xi
0 − x0∥2 + 5E · 2Eη2σ2 ≤ 10E2η2σ2.

Bring this back to Eq. (40), we then have,

∥∇Fg(x; ξg)−∇Fg(x)∥2 ≤ |g|E
∑

i∈g

n2
i

n2
g

E−1∑

e=0

(σ2 + 10η2E2L2σ2) ≤ γE2(1 + 10η2E2L2)σ2.

Proof of Lemma 2
First, based on the definition, we have

∥∇Fg(x)−∇Fg(y)∥2 = ∥
∑

i∈g

ni

ng

E−1∑

e=0

(∇fi(xe)−∇fi(ye))∥2 ≤ |g|
∑

i∈g

n2
i

n2
g

E
E−1∑

e=0

∥∇fi(xe)−∇fi(ye)∥2

≤ |g|[1

|g|2 + V ar(
ni

ng
)]|g|E2∥∇fi(xe)−∇fi(ye)∥2 ≤ [1 + |g|2V ar(

ni

ng
)]E2L2∥xe − ye∥2. (41)

Regarding ∥xe − ye∥2, we have

∥xe − ye∥2 = ∥xe−1 − η∇fi(xe−1; ξi)− (ye−1 − η∇fi(ye−1; ξi))∥2 = ∥xe−1 − ye−1 − η(∇fi(xe−1; ξi)−∇fi(ye−1; ξi))∥2
= ∥xe−1 − ye−1 − η(∇fi(xe−1; ξi)−∇fi(xe−1) +∇fi(xe−1)−∇fi(ye−1; ξi) +∇fi(ye−1)−∇fi(ye−1))∥2

≤ (1 +
1

2E
)∥xe−1 − ye−1∥+ η2(∥∇fi(xe−1; ξi)−∇fi(xe−1)∥2 + ∥∇fi(ye−1; ξi)−∇fi(ye−1)∥2)

+ 2η2E∥∇fi(xe−1)−∇fi(ye−1)∥2

≤ (1 +
1

2E − 1
)∥xe−1 − ye−1∥+ 2η2σ2 + 2η2E∥∇fi(xe−1)−∇fi(ye−1)∥2

≤ (1 +
1

2E − 1
)∥xe−1 − ye−1∥+ 2η2σ2 + 2η2EL2∥xe−1 − ye−1∥2

≤ (1 +
1

2E − 1
+ 2η2EL2)∥xe−1 − ye−1∥2 + 2η2σ2.

Under the condition of η ≤ 1√
6(E−1)(2E−1)L2

(Eq. (19), η ≤ 1√
2(E−1)(2E−1)L2

(i.e., 1 + 1
2E−1 + 2Eη2L2 ≤ 1 + 1

E−1). Thus

we have

∥xe − ye∥2 ≤ (1 +
1

E − 1
)∥xe−1 − ye−1∥2 + 2η2σ2.

2

Based on the definition of group training and the aforementioned conditions, we have

∥xe − ye∥2 ≤ (1 +
1

E − 1
)E∥x0 − y0∥2 + 2η2σ2

E−1∑

p=0

(1 +
1

E − 1
)p ≤ 6∥x− y∥2 + 10η2Eσ2

Note that ∥x0 − y0∥ is ∥x − y∥ at the first round before any local update. Bring the bound of ∥xe − ye∥2 back to Eq. (41),
we then have

∥∇Fg(x)−∇Fg(y)∥2 ≤ γE2L2(6∥x− y∥2 + 10η2E2σ2) ≤ 6γE2L2∥x− y∥2 + 10γη2E4L2σ2.

Proof of Lemma 3
To facilitate bounding the heterogeneity of Fg , we first define

∥∇fg(x)−∇f(x)∥2 = ∥
∑

i∈g

ni

ng
∇fi(x)−

∑

i∈g

ni

ng
∇f(x)∥2 = ∥

∑

i∈g

ni

ng
(∇fi(x)−∇f(x))∥2 = ζ2g .

The heterogeneity of Fg is bounded by

∥∇Fg(x)− E∇f(x)∥2

=∥
∑

i∈g

ni

ng

E−1∑

e=0

(∇fi(x
i
e; ξ

i
e)−∇f(x))∥2 = ∥

∑

i∈g

ni

ng

E−1∑

e=0

(∇fi(x
i
e; ξ

i
e)−∇fi(x

i
e) +∇fi(x

i
e)−∇fi(x) +∇fi(x)−∇f(x))∥2

≤3∥
∑

i∈g

ni

ng

E−1∑

e=0

(∇fi(x
i
e; ξ

i
e)−∇fi(x

i
e))∥2 + 3∥

∑

i∈g

ni

ng

E−1∑

e=0

(∇fi(x
i
e)−∇fi(x))∥2 + 3∥

∑

i∈g

ni

ng

E−1∑

e=0

(∇fi(x)−∇f(x))∥2

≤3
∑

i∈g

n2
i

n2
g

E−1∑

e=0

σ2 + 3|g|
∑

i∈g

n2
i

n2
g

E
E−1∑

e=0

∥(∇fi(x
i
e)−∇fi(x))∥2 + 3E2∥

∑

i∈g

ni

ng
(∇fi(x)−∇f(x))∥2. (42)

Similar to the proof of smoothness of Fg , we can show

∥xi
e − x∥2 = ∥xi

e−1 − η∇fi(x
i
e−1; ξ

i
e−1)− x∥2

= ∥xi
e−1 − x− η(fi(x

i
e−1; ξ

i
e−1)−∇fi(x

i
e−1) +∇fi(x

i
e−1)−∇fi(x) +∇fi(x)−∇f(x) +∇f(x))∥

≤ (1 +
1

2E − 1
)∥xi

e−1 − x∥+ η2σ2 + 2Eη2(3L2∥xi
e−1 − x∥+ 3ζ2 + 3∥∇f(x)∥2)

≤ (1 +
1

2E − 1
+ 6η2EL2)∥xi

e−1 − x∥+ η2σ2 + 6η2Eζ2 + 6η2E∥∇f(x)∥2.

When η ≤ 1√
6(E−1)(2E−1)L2

(as Eq. (19), i.e., 1 + 1
2E−1 + 6η2EL2 ≤ 1 + 1

E−1), we know

∥xi
e − x∥2 ≤ (1 +

1

E − 1
)∥xi

e−1 − x∥+ η2σ2 + 6η2Eζ2 + 6η2E∥∇f(x)∥2. (43)

Unrolling the geometric sequence,

∥xi
e − x∥2 ≤



E−1∑

p=0

(1 +
1

E − 1
)p


 (η2σ2 + 6η2Eζ2 + 6η2E∥∇f(x)∥2) ≤ 5η2Eσ2 + 30η2E2ζ2 + 30η2∥E∇f(x)∥2 (44)

Since ∥∇fi(x
i
e)−∇fi(x)∥2 ≤ L2∥xi

e − x∥2 and Eq. (44), we then have Eq. (42) to be

∥∇Fg(x)− E∇f(x)∥2 ≤3γE

|g| σ2 + 3γE2(5η2EL2(σ2 + 6Eζ2) + 30η2L2∥E∇f(x)∥2) + 3E2ζ2g

=(
3γE

|g| + 15γη2E3L2)σ2 + 90γη2E4L2ζ2 + 3E2ζ2g + 90γη2E2L2∥E∇f(x)∥2.

Proof of Lemma 4
First, from the definition, we have

E[∥xg
t,k − xt∥2] = E[∥xg

t,k−1 − xt − η∇Fg(x
g
t,k−1; ξg)∥2]

= E[∥xg
t,k−1 − xt − η(∇Fg(x

g
t,k−1; ξg)−∇Fg(xt,k−1) +∇Fg(xt,k−1)−∇Fg(xt) +∇Fg(xt)− E∇f(xt) + E∇f(xt))∥2]

≤ (1 +
1

2K − 1
)E[∥xg

t,k−1 − xt∥2] + E[∥η(∇Fg(x
g
t,k−1; ξg)−∇Fg(xt,k−1))∥2] + 6KE[∥η(∇Fg(xt,k−1)−∇Fg(xt))∥2]

+ 6KE[∥η(∇Fg(xt)− E∇f(xt))∥2] + 6KE[∥ηE∇f(xt)∥2].

3

Based on the properties of Fg (Lemmas 1, 2, and 3 in Section 3.1), we then have

E[∥xg
t,k − xt∥2] ≤ (1 +

1

2K − 1
)E[∥xg

t,k−1 − xt∥2] + η2γE2(1 + 10η2E2L2)σ2 + 6η2K(6γE2L2∥xt,k−1 − xt∥2 + 10γη2E4L2σ2)

+ 6Kη2((
3γE

|g| + 15γη2E3L2)σ2 + 90γη2E4L2ζ2 + 3E2ζ2g + 90γη2E2L2∥E∇f(x)∥2) + 6KE[∥ηE∇f(xt)∥2].

When η ≤ 1√
36γ(K−1)(2K−1)E2L2

(as Eq. (20), i.e., 1 + 1
2K−1 + 36η2γKE2L2 ≤ 1 + 1

K−1), we have

E[∥xg
t,k − xt∥2] ≤ (1 +

1

K − 1
)E[∥xg

t,k−1 − xt∥2] + [η2E2 + 10η4E4L2 + 60η4KE4L2 + 6η2K(
3E

|g| + 15η2E3L2)]γσ2

+ 540η4KE4L2γζ2 + 18η2KE2ζ2g ++6η2K(1 + 90γη2E2L2)E[∥E∇f(xt)∥2].
Unrolling the recursion, we then get the conclusion:

1

|G|
∑

g∈G
∥xg

t,k − xt∥2 ≤ λσγσ
2 + λ3ζ

2 + 90η2K2E2ζ2g + λfE[∥ηE∇f(xt)∥2].

