
Group-based Hierarchical Federated Learning: Convergence,
Group Formation, and Sampling

Jiyao Liu, Xinliang Wei, Xuanzhang Liu, Hongchang Gao, Yu Wang

Department of Computer and Information Sciences, Temple University

Philadelphia, Pennsylvania, USA

{jiyao.liu,xinliang.wei,xzliu,hongchang.gao,wangyu}@temple.edu

ABSTRACT
Hierarchical federated learning has been studied as a more practical

approach to federated learning in terms of scalability, robustness,

and privacy protection, particularly in edge computing. To achieve

these advantages, operations are typically conducted in a grouped

manner at the edge, whichmeans that the formation of client groups

can affect the learning performance, such as the benefits gained

and costs incurred by group operations. This is especially true for

edge and mobile devices, which are more sensitive to computa-

tion and communication overheads. The formation of groups is

critical for group-based federated edge learning but has not been

studied in detail, and even been overlooked by researchers. In this

paper, we consider a group-based federated edge learning frame-

work that leverages the hierarchical cloud-edge-client architecture

and probabilistic group sampling. We first theoretically analyze the

convergence rate with respect to the characteristics of the client

groups, and find that group heterogeneity plays an important role

in the convergence. Then, on the basis of this key observation,

we propose new group formation and group sampling methods to

reduce data heterogeneity within groups and to boost the conver-

gence and performance of federated learning. Finally, our extensive

experiments show that our methods outperform current algorithms

in terms of prediction accuracy and training cost.

CCS CONCEPTS
• Computing methodologies→Machine learning; Distributed

computing methodologies; • Networks → Network architectures.

KEYWORDS
Hierarchical federated learning, non-IID, group formation, group

sampling, distributed learning, edge computing

ACM Reference Format:
Jiyao Liu, Xinliang Wei, Xuanzhang Liu, Hongchang Gao, Yu Wang. 2023.

Group-based Hierarchical Federated Learning: Convergence, Group Forma-

tion, and Sampling. In 52nd International Conference on Parallel Processing

The work is partially supported by the US National Science Foundation under Grant

No. CCF-1908843 and CNS-2006604.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0843-5/23/08. . . $15.00

https://doi.org/10.1145/3605573.3605584

Cloud
Edge

Clients

Remote Cloud Edge Servers Mobile Devices Local Model Upload

Local Model Group Model Global Model
Group Model Upload

Global Aggregation

Group
Aggregation

Global Model Download

Group
Aggregation

Group
Aggregation

Figure 1: Group-based federated edge learning (Group-FEL)
via the client-edge-cloud architecture.

(ICPP 2023), August 7–10, 2023, Salt Lake City, UT, USA. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3605573.3605584

1 INTRODUCTION
Hierarchical federated learning (HFL) [1, 2] has been studied as

a more practical federated learning (FL) [3] paradigm in terms of

scalability, efficiency, robustness, privacy, etc. Federated learning,

whose fundamental purpose protecting users’ data privacy, is actu-

ally born hierarchical [2]: clients are generally divided into groups

to reduce the communication and computation costs incurred by

secure aggregation [4]. As edge servers can greatly improve the

scalability, connection stability, and system robustness, it is natural

to deploy the HFL framework in the client-edge-cloud architecture,

as shown in Fig. 1. In this paper, we consider group-based feder-

ated edge learning (Group-FEL) over such an HFL framework. First,

each edge server manages a set of clients and groups them based

on a specific policy. Such group information is sent to the cloud.

The cloud adopts a probabilistic group sampling from all groups

to select a few client groups to perform HFL at each global round.

The clients within a selected group download the global model and

train it with their own datasets, and then send local updates to the

edge server for the group aggregation. Group operations, such as

secure aggregation and backdoor detection, occur during group ag-

gregation. Each group performs this in-group workflow in multiple

rounds before sending the group updates to the cloud aggregator.

The cloud aggregator performs the final global aggregation and

then sends the latest global model back to the edge servers and

mobile clients. Note that when there is only one group on each edge

server, the system degrades to a typical client-edge-cloud HFL.

Group-FEL can gain benefits from the edge network due to the

low communication cost and more stable connection. However,

group operations may still incur high costs, which have not yet

been considered by previous works. Fig. 2(a) shows the overheads

https://doi.org/10.1145/3605573.3605584
https://doi.org/10.1145/3605573.3605584

ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Liu et al.

0 10 20 30 40 50
Data/Group Size

0

10

20

30

40

50

Ti
m

e
(s

)

Secure Aggregation
Backdoor Detection
Training

(a) Group Overheads

0 1 2 3 4 5
Cost 1e5

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

GS=5
GS=10
GS=15
GS=20

(b) Group Size (GS)

Figure 2: Overhead of Group-FEL: (a) different group over-
heads: for training cost, 𝑥-axis is training data number, for
secure aggregation and backdoor detection, 𝑥-axis is group
size; (b) accuracy over cost with different group sizes.

of a client via a real-world measurement of a group-based FEL over

Raspberry PI based edge systems. It plots three types of overheads:

training cost, secure aggregation cost, and backdoor detection cost.

It is obvious that the overhead of these group operations can be

comparable to or even significantly exceeds the training cost. Con-

sidering the amount of data owned by clients is typically small,

when the group size is large, the overheads of group operations

overwhelmingly dominate the costs. This is critical for HFL using

mobile or IoT devices as clients, due to their limited resources. Sim-

ply reducing the group size, however, may not work. As shown

in Fig. 2(b), even we reduce the group size from 20 to 5, the total

cost (defined as Equ. (5)) needed to achieve a certain accuracy stays

similar. Here, the plotted cost is the total cost during the whole FL

training period including training cost and group operation cost.

The reason why a smaller group size does not always lead to

total cost reduction is that the data within smaller client groups

are usually more skewed, which hinders the convergence, thus

causing high costs. As shown by many FL works [5–12], the non-

IID (non-Independent and Identically Distributed) issue hurts the

FL convergence. For Group-FEL, we first theoretically derive its

convergence rate and show that the data distribution within groups

(i.e., the IID degree of the group data) indeed affects the training

convergence in theory. Based on such an observation, we introduce

a new grouping method (i.e., CoV-Grouping), which leverages the

coefficient of variation (CoV) to form client groups. Instead of simply

playing trade-offs between the group size and the IID degree (or

between cost and accuracy), our group formation method generates

smaller groups with less skewed data. In that way, it is possible to

form groups that are beneficial to convergence and are less costly. In

addition, we further propose different CoV-based sampling methods

to calculate group sampling probabilities, so that priority is given

to groups with better CoV values. Our results also show that CoV

is effective in judging the quality of a group. This observation

is also useful for other HFL-based methods. Finally, we compare

our proposed method with existing non-IID countering methods

via extensive experiments, including the training method based

approaches (FedProx [6] and SCAFFOLD [7]), client assignment

based approaches (OUEA [13] and SHARE [14]), and a personalized

FL approach (FedCLAR [12]). Our results confirm the advances

of our proposed method over these existing methods in a group-

based HFL setting. To the best of our knowledge, this is the first

work that considers the impact of group overhead in FL, and offers

a pioneer yet comprehensive exploration, including theoretical

analysis, group formation, and a new sampling strategy specifically

designed for Group-FEL. We hope this works inspires more future

investigations into this important but ignored problem.

In short, our contributions are summarized as follows:

• We introduce a general group-based hierarchical federated

edge learning framework (Group-FEL) where edge servers

perform client grouping and the cloud performs probabilistic

group sampling. (Section 3)

• We provide a theoretical convergence analysis of Group-FEL

with emphasis on the quality of group data distribution, and

discovery that the group heterogeneity plays an important

role in the convergence. This general result applies to all

generic HFL systems
1
. (Section 4)

• We design a new group formation algorithm based on the

group’s coefficient of variation (CoV), to generate groups

with better data distribution, thus speeding up convergence

and reducing costs. (Section 5)

• We also propose several group sampling strategies to sample

groups with better distribution. The results also shed light

on other group/cluster sampling methods. (Section 6)

• Extensive experiments are conducted to demonstrate the

effectiveness of the proposed group formation algorithm,

sampling strategies, as well as the training result of the whole

system. (Section 7)

2 RELATEDWORKS
2.1 Non-IID in Federated Learning
Recently, the Non-IID problem in FL has been well-studied in prior

research such as [5–10, 12, 15]. These works can be categorized

into two types based on how they address statistical heterogeneity

and their corresponding objectives. The first type of work, such as

[5–7], aims to reduce the negative impact of objective inconsistency

caused by skewed data and obtain a global model that performs

well in the overall task (where there is no data distribution skew).

The other type of work recognizes that heterogeneity reflects the

different natures and demands of different clients, thus they focus

on training multiple personalized models designed for different

users, instead of training a good global model. This kind of method

is also called personalized FL. In general, if the goal is to extend the

available data to generate a general model, the first approach may

be used. If the goal is to improve the immediate user experience,

the personalized approach may be more suitable.

To train a global model that works well for the overall task, we

need to strive to remedy the negative impact of inconsistent local

objectives. The pioneer work mainly uses training-based meth-

ods, such as augmenting the data, modifying the loss function,

and changing the descent direction. Zhao et al.[5] utilize a glob-
ally shared dataset to bootstrap and reduce the label distribution

skew among clients. FedProx [6] limits the divergence of local

training from the last global model to mitigate inaccurate updates.

SCAFFOLD [7] records the direction of local and global gradient

to re-direct updates to an estimated correct direction. CCVR [11]

calibrates the classifier layer using sampled virtual representations,

1
Our theoretical analysis does not rely on a specific grouping method, thus is general

enough to cover any generic group-based HFL. Furthermore, since we consider both

the quality of the group data distribution and the probability of sampling the group,

our result is different from the existing HFL convergence analysis (e.g., [1] and [13]).

Group-based Hierarchical Federated Learning: Convergence, Group Formation, and Sampling ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA

while DFL [16] tries to separate global and local-only features

to perform alternative local-global optimization for both gener-

alized adaption and personalized performance. For personalized FL,

as suggested by [17], there are many methods, including but not

limited to transfer learning [12], meta-learning [18], knowledge

distillation[19], and clustering [12].

This paper focuses on the first type of approach to train a global

model and our proposed method outperforms existing methods in

the HFL environment. We choose the two most popular methods

FedProx and SCAFFOLD as part of the baselines in experiments.

Although personalized FL methods do not align well with our target

scenario, we also include FedCLAR [12] in experiments to confirm

that this type of solution is not suitable in our considered scenario.

2.2 Hierarchical Federated Learning (HFL)
HFL has been studied recently due to advances in the scalability

and privacy protection of FL. A cloud-edge-client HFL framework

has been studied in [1] and it gives the convergence analysis of

HFL. Wang et al. [20] also considered cluster structure formation in

HFL where edge servers are grouped in different clusters for model

aggregation. While both [1] and [20] provide the HFL convergence

analysis, their analysis is different from ours, since they do not

consider (1) group sampling (i.e., the sampling fraction for each

group) and (2) group characters (such as the variance of data number

among clients and groups).

To handle the non-IID problem in HFL, OUEA [13] and SHARE

[14] consider the client assignment problem: they try to assign

clients to edge servers such that the clients associated with each

edge server have a balanced data distribution when virtually com-

bined. OUEA [13] first clusters similar clients together and then

distributes them to different groups so that the data distribution

inside each group tends to be IID. OUEA also offers a convergence

analysis, but similar to [1], they do not consider group sampling

and some group-specific characters. Furthermore, OUEA requires

the loss functions to be convex (which is not true for neural net-

works) while our analysis does not. SHARE [14] also considers data

distribution among edge aggregators and optimizes communication

cost during the client-edge assignment. It uses Kullback–Leibler

divergence (KLD) to measure the IID degree among edge aggre-

gators. Both OUEA and SHARE consider each edge server as one

single aggregator (i.e., aggregating one client group) and do not

control the group size. In the experiments, we port their assignment

policy to the group formation and re-implement their algorithms

for comparison with our grouping method.

All of the works above consider the hierarchical structure and/or

the communication cost, but none of them takes into account the

overhead incurred by group operations (especially those for

security and privacy protection operations). As a result, they do

not limit the number of clients associated with an edge aggregator

(within a group), which may not be cost-efficient, as shown in

Fig. 2. Additionally, some efforts focused on privacy protection and

participant selection in HFL. Wainakh et al. [21] pointed out the

gain of HFL on privacy enhancement. Yang et al. [22] proposed
a compression mechanism and gradient clipping method in an

HFL architecture to reduce communication overhead and protect

privacy. Wei et al. [23] studied the participant selection problem of

a multi-model HFL. Our work instead focuses on group formation

Probability based Group Sampling
at Cloud

CoV based Group Formation at Edge

… … …

!1

!2

!3

!4

{#1, #2, #3, #4}

- = {)!}
CoV

Grouping: greedy algorithm

1. Compute group sampling probability)!
2. Group sampling based on)!

Group selected

… … …

Edge
Server j

… … …

… … …

{#1, #2, #3, #4}

Probability based Group Sampling
at Cloud

CoV based Group Formation at Edge

… … …

!1

!2

!3

!4

{#1, #2, #3, #4}

)!

CoV
Grouping: greedy algorithm

1. Compute group sampling probability)!
2. Group sampling based on)!

Group selected

… … …

Edge
Server j

… … …

… … …

{#1, #2, #3, #4}

Fig. 3: The overall framework of Group-FEL.

into multiple mutually exclusive client groups. Let G and
Gj be the set of all groups and the set of groups of j-
th edge server, respectively. Then the federated learning are
performed with selected client groups (denoted by St) based
on certain selection mechanism (i.e., via group sampling with
a probability vector p) at each global round t. Each client
ci in a selected group performs local training and sends it
local model updates to its edge server for group aggregation.
Then edge servers will perform group aggregation and submit
the group model updates to the cloud server (i.e., parameter
server) for global aggregation. The overall training algorithm
of group-based FEL is shown in Algorithm 1.

In Algorithm 1, Lines 2-4 are for group formation at each
edge server, and Line 5 is for the computation of sampling
probability vector p of all groups. These are important steps
for Group-FEL, thus we will present our detailed design of
them in Section V and Section VI, respectively. Lines 6-21 are
the group-based federated learning steps, which include group
sampling (Line 7), local update (Line 14), group aggregation
(Line 17), and global aggregation (Line 20). Here, xt, xg

t,k,
xi

t,k,e represent the global model at t-th global round, the
group model at k-th group round within t-th global round,
the local model of client ci at e-th local round within k-th
group round and t-th global round, respectively.

In classic federated learning, given the client set C with N
clients, and the loss function fi of the client ci, we have the
global loss function

f(x) =
X

ci2C

ni

n
fi(x), (1)

where ni is the number of data entries on the i-th client, and
n =

PN�1
i=0 ni. When we divide clients into a set of groups

Algorithm 1 Group-based Federated Edge Learning
Input: Client sets Cj of each server, number of sampled groups
in each round S = |St|, initial global model x0, global round
T , group round K, local round E, learning rate ⌘.
Output: Final global model xT�1.

1: G = ;
2: for each client set Cj do . in parallel
3: G = G [COV-GROUPING(Cj) . group formation
4: end for
5: p = SAMPLING-PROB(G) . group sampling prob
6: for t from 0 to T � 1 do
7: Sample St ✓ G according to p . group sampling
8: for group g in St do . in parallel
9: xg

t,0 = xt . initialize group model
10: for k from 0 to K � 1 do
11: for client ci in group g do . in parallel
12: xi

t,k,0 = xg
t,k . initialize client model

13: for e from 0 to E � 1 do
14: xi

t,k,e+1 = xi
t,k,e � ⌘rfi(x

i
t,k,e; ⇠

i
t,k,e)

. local update
15: end for
16: end for
17: xg

t,k+1 =
P

i2g
ni

nt
xi

t,k,E�1

. group aggregation
18: end for
19: end for
20: xt+1 =

P
g2St

ng

nt
xg

t,K�1 . global aggregation
21: end for

G, then for each group g, its loss function is

fg(x) =
X

ci2g

ni

ng
fi(x), (2)

where ng is the number of data on all clients inside the group
g. Hence, the global loss function can be rewritten as

f(x) =
X

g2G

ng

n
fg(x). (3)

At Line 20 of Algorithm 1, the global aggregation may
lead to the learned model biased since some groups have
higher probability to be sampled during the group sampling.
This is true for our design, since we always give higher
priority to groups with better distribution to boost convergence.
Therefore, we will discuss this in Section VI. If the model
is required to be unbiased, a correction factor 1

pgS can be
introduced and Line 20 is then replaced by

xt+1 =
X

g2St

1

pgS
· ng

n
xg

t,K�1, (4)

where pg is the probability to sample the group g during the
group sampling and S is the number of sampled groups in
each round S = |St|.

Probability based Group Sampling
at Cloud

CoV based Group Formation at Edge

… … …

!1

!2

!3

!4

{#1, #2, #3, #4}

)!

CoV
Grouping: greedy algorithm

1. Compute group sampling probability)!
2. Group sampling based on)!

Group selected

… … …

Edge
Server j

… … …

… … …

{#1, #2, #3, #4}

Fig. 3: The overall framework of Group-FEL.

into multiple mutually exclusive client groups. Let G and
Gj be the set of all groups and the set of groups of j-
th edge server, respectively. Then the federated learning are
performed with selected client groups (denoted by St) based
on certain selection mechanism (i.e., via group sampling with
a probability vector p) at each global round t. Each client
ci in a selected group performs local training and sends it
local model updates to its edge server for group aggregation.
Then edge servers will perform group aggregation and submit
the group model updates to the cloud server (i.e., parameter
server) for global aggregation. The overall training algorithm
of group-based FEL is shown in Algorithm 1.

In Algorithm 1, Lines 2-4 are for group formation at each
edge server, and Line 5 is for the computation of sampling
probability vector p of all groups. These are important steps
for Group-FEL, thus we will present our detailed design of
them in Section V and Section VI, respectively. Lines 6-21 are
the group-based federated learning steps, which include group
sampling (Line 7), local update (Line 14), group aggregation
(Line 17), and global aggregation (Line 20). Here, xt, xg

t,k,
xi

t,k,e represent the global model at t-th global round, the
group model at k-th group round within t-th global round,
the local model of client ci at e-th local round within k-th
group round and t-th global round, respectively.

In classic federated learning, given the client set C with N
clients, and the loss function fi of the client ci, we have the
global loss function

f(x) =
X

ci2C

ni

n
fi(x), (1)

where ni is the number of data entries on the i-th client, and
n =

PN�1
i=0 ni. When we divide clients into a set of groups

Algorithm 1 Group-based Federated Edge Learning
Input: Client sets Cj of each server, number of sampled groups
in each round S = |St|, initial global model x0, global round
T , group round K, local round E, learning rate ⌘.
Output: Final global model xT�1.

1: G = ;
2: for each client set Cj do . in parallel
3: G = G [COV-GROUPING(Cj) . group formation
4: end for
5: p = SAMPLING-PROB(G) . group sampling prob
6: for t from 0 to T � 1 do
7: Sample St ✓ G according to p . group sampling
8: for group g in St do . in parallel
9: xg

t,0 = xt . initialize group model
10: for k from 0 to K � 1 do
11: for client ci in group g do . in parallel
12: xi

t,k,0 = xg
t,k . initialize client model

13: for e from 0 to E � 1 do
14: xi

t,k,e+1 = xi
t,k,e � ⌘rfi(x

i
t,k,e; ⇠

i
t,k,e)

. local update
15: end for
16: end for
17: xg

t,k+1 =
P

i2g
ni

nt
xi

t,k,E�1

. group aggregation
18: end for
19: end for
20: xt+1 =

P
g2St

ng

nt
xg

t,K�1 . global aggregation
21: end for

G, then for each group g, its loss function is

fg(x) =
X

ci2g

ni

ng
fi(x), (2)

where ng is the number of data on all clients inside the group
g. Hence, the global loss function can be rewritten as

f(x) =
X

g2G

ng

n
fg(x). (3)

At Line 20 of Algorithm 1, the global aggregation may
lead to the learned model biased since some groups have
higher probability to be sampled during the group sampling.
This is true for our design, since we always give higher
priority to groups with better distribution to boost convergence.
Therefore, we will discuss this in Section VI. If the model
is required to be unbiased, a correction factor 1

pgS can be
introduced and Line 20 is then replaced by

xt+1 =
X

g2St

1

pgS
· ng

n
xg

t,K�1, (4)

where pg is the probability to sample the group g during the
group sampling and S is the number of sampled groups in
each round S = |St|.

Probability based Group Sampling
at Cloud

CoV based Group Formation at Edge

… … …

!1

!2

!3

!4

{#1, #2, #3, #4}

)!

CoV
Grouping: greedy algorithm

1. Compute group sampling probability)!
2. Group sampling based on)!

Group selected

… … …

Edge
Server j

… … …

… … …

{#1, #2, #3, #4}

Fig. 3: The overall framework of Group-FEL.

into multiple mutually exclusive client groups. Let G and
Gj be the set of all groups and the set of groups of j-
th edge server, respectively. Then the federated learning are
performed with selected client groups (denoted by St) based
on certain selection mechanism (i.e., via group sampling with
a probability vector p) at each global round t. Each client
ci in a selected group performs local training and sends it
local model updates to its edge server for group aggregation.
Then edge servers will perform group aggregation and submit
the group model updates to the cloud server (i.e., parameter
server) for global aggregation. The overall training algorithm
of group-based FEL is shown in Algorithm 1.

In Algorithm 1, Lines 2-4 are for group formation at each
edge server, and Line 5 is for the computation of sampling
probability vector p of all groups. These are important steps
for Group-FEL, thus we will present our detailed design of
them in Section V and Section VI, respectively. Lines 6-21 are
the group-based federated learning steps, which include group
sampling (Line 7), local update (Line 14), group aggregation
(Line 17), and global aggregation (Line 20). Here, xt, xg

t,k,
xi

t,k,e represent the global model at t-th global round, the
group model at k-th group round within t-th global round,
the local model of client ci at e-th local round within k-th
group round and t-th global round, respectively.

In classic federated learning, given the client set C with N
clients, and the loss function fi of the client ci, we have the
global loss function

f(x) =
X

ci2C

ni

n
fi(x), (1)

where ni is the number of data entries on the i-th client, and
n =

PN�1
i=0 ni. When we divide clients into a set of groups

Algorithm 1 Group-based Federated Edge Learning
Input: Client sets Cj of each server, number of sampled groups
in each round S = |St|, initial global model x0, global round
T , group round K, local round E, learning rate ⌘.
Output: Final global model xT�1.

1: G = ;
2: for each client set Cj do . in parallel
3: G = G [COV-GROUPING(Cj) . group formation
4: end for
5: p = SAMPLING-PROB(G) . group sampling prob
6: for t from 0 to T � 1 do
7: Sample St ✓ G according to p . group sampling
8: for group g in St do . in parallel
9: xg

t,0 = xt . initialize group model
10: for k from 0 to K � 1 do
11: for client ci in group g do . in parallel
12: xi

t,k,0 = xg
t,k . initialize client model

13: for e from 0 to E � 1 do
14: xi

t,k,e+1 = xi
t,k,e � ⌘rfi(x

i
t,k,e; ⇠

i
t,k,e)

. local update
15: end for
16: end for
17: xg

t,k+1 =
P

i2g
ni

nt
xi

t,k,E�1

. group aggregation
18: end for
19: end for
20: xt+1 =

P
g2St

ng

nt
xg

t,K�1 . global aggregation
21: end for

G, then for each group g, its loss function is

fg(x) =
X

ci2g

ni

ng
fi(x), (2)

where ng is the number of data on all clients inside the group
g. Hence, the global loss function can be rewritten as

f(x) =
X

g2G

ng

n
fg(x). (3)

At Line 20 of Algorithm 1, the global aggregation may
lead to the learned model biased since some groups have
higher probability to be sampled during the group sampling.
This is true for our design, since we always give higher
priority to groups with better distribution to boost convergence.
Therefore, we will discuss this in Section VI. If the model
is required to be unbiased, a correction factor 1

pgS can be
introduced and Line 20 is then replaced by

xt+1 =
X

g2St

1

pgS
· ng

n
xg

t,K�1, (4)

where pg is the probability to sample the group g during the
group sampling and S is the number of sampled groups in
each round S = |St|.

Figure 3: The overall grouping framework in Group-FEL:
(lower) CoV-based group formation at the edge, and (upper)
probability based group sampling at the cloud.

and sampling in a group-based HFL to reduce the total learning

cost (including overhead caused by group operations).

2.3 Performance Measurement
Most existing works measure convergence by iteration, which is

not effective in many cases. For example, some algorithms [6, 7]

require more computation and/or communication in each round

to achieve faster convergence regarding global iterations but may

be slower when measured by wall clock time and/or resource cost.

Therefore, more realistic measurements for FL systems have been

investigated to satisfy different application requirements. Luo et al.
[24] seek to reduce the training wall clock time. They propose a

new convergence upper bound for arbitrary client selection prob-

abilities and generate a non-convex training time minimization

problem. Their approach significantly reduces the convergence

time to achieve the same target loss compared to several baselines

regarding the wall-clock time. Yang et al.. [25] study the energy

consumption optimization problem for battery-sensitive devices

and the proposed method can save up to 59.5% energy. Some works

[26, 27] notice that communication traffic may also be a potential

bottleneck for cross-device FL systems, and hence seek to reduce

the bandwidth requirement by gradient/model compression. They

compare the convergence rates by loss over total network traffic.

In this paper, we consider all costs incurred by training and group

operations and unify the latter into one quadratic function. We will

then evaluate the performance of FL systems in terms of accuracy

over this generally defined cost.

3 GROUP-BASED FEL (GROUP-FEL)
3.1 System Model and Learning Procedures
In this paper, we consider a group-based hierarchical federated

learning over edge computing, as shown in Fig. 1. We assume that

multiple mobile clients (let C be the client set) are connected to

cloud via edge servers. Each edge server will divide its clients (C𝑗 ,
the client set of 𝑗-th edge server) into multiple mutually exclusive

client groups. Let G and G𝑗 be the set of all groups and the set of

groups of 𝑗-th edge server, respectively. Then the federated learning

is performed with selected client groups (denoted by S𝑡) based on

ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Liu et al.

Algorithm 1 Group-based Federated Edge Learning

Input: Client sets C𝑗 of each server, number of sampled groups

in each round 𝑆 = |S𝑡 |, initial global model 𝑥0, global round 𝑇 ,

group round 𝐾 , local round 𝐸, learning rate 𝜂.

Output: Final global model 𝑥𝑇−1.
1: G = ∅
2: for each client set C𝑗 do ⊲ in parallel
3: G = G ∪ CoV-Grouping(C𝑗) ⊲ group formation

4: p =Sampling-Prob(G) ⊲ group sampling prob
5: for 𝑡 from 0 to 𝑇 − 1 do
6: Sample S𝑡 ⊆ G according to p ⊲ group sampling
7: for group g in S𝑡 do ⊲ in parallel
8: 𝑥

𝑔

𝑡,0
= 𝑥𝑡 ⊲ initialize group model

9: for 𝑘 from 0 to 𝐾 − 1 do
10: for client 𝑐𝑖 in group 𝑔 do ⊲ in parallel
11: 𝑥𝑖

𝑡,𝑘,0
= 𝑥

𝑔

𝑡,𝑘
⊲ initialize client model

12: for 𝑒 from 0 to 𝐸 − 1 do
13: 𝑥𝑖

𝑡,𝑘,𝑒+1 = 𝑥
𝑖
𝑡,𝑘,𝑒

− 𝜂∇𝑓𝑖 (𝑥𝑖𝑡,𝑘,𝑒 ; 𝜉
𝑖
𝑡,𝑘,𝑒

)
⊲ local update

14: 𝑥
𝑔

𝑡,𝑘+1 =
∑
𝑖∈𝑔

𝑛𝑖
𝑛𝑔
𝑥𝑖
𝑡,𝑘,𝐸−1 ⊲ group aggregation

15: 𝑥𝑡+1 =
∑
𝑔∈S𝑡

𝑛𝑔
𝑛𝑡
𝑥
𝑔

𝑡,𝐾−1 ⊲ global aggregation

16: return 𝑥𝑇−1

a certain selection mechanism (i.e., via group sampling with a prob-

ability vector p) at each global round 𝑡 . Each client 𝑐𝑖 in a selected

group performs local training and sends its local model updates

to its edge server for group aggregation. Then edge servers will

perform group aggregation and submit the group model updates

to the cloud server (i.e., parameter server) for global aggregation.

The overall training algorithm of group-based FEL is shown in

Algorithm 1. Fig. 3 illustrates the overall grouping framework of

Group-FEL, where the grouping is performed at the edge server for

its clients, and the group sampling is done at the cloud with the

sampling probability vector.

In Algorithm 1, Lines 2-3 are for group formation at each edge

server, and Line 4 is for the computation of sampling probability

vector p of all groups at the cloud. These are important steps for

Group-FEL, thus we will present our detailed design of them in Sec-

tions 5 and 6, respectively. Lines 5-15 are the group-based federated

learning steps, which include group sampling (Line 6), local update

(Line 13), group aggregation (Line 14), and global aggregation (Line

15). Here, 𝑥𝑡 , 𝑥
𝑔

𝑡,𝑘
, 𝑥𝑖
𝑡,𝑘,𝑒

represent the global model at 𝑡-th global

round, the group model at 𝑘-th group round within 𝑡-th global

round, the local model of client 𝑐𝑖 at 𝑒-th local round within 𝑘-th

group round and 𝑡-th global round, respectively.

In classic federated learning, given the client set C with𝑁 clients,

and the loss function 𝑓𝑖 of the client 𝑐𝑖 , we have the global loss

function

𝑓 (𝑥) =
∑︁
𝑐𝑖 ∈C

𝑛𝑖

𝑛
𝑓𝑖 (𝑥), (1)

where 𝑛𝑖 is the data entry number on 𝑖-th client, and 𝑛 =
∑𝑁−1
𝑖=0 𝑛𝑖 .

When we divide clients into a set of groups G, then for each

group g, its loss function is

𝑓𝑔 (𝑥) =
∑︁
𝑐𝑖 ∈g

𝑛𝑖

𝑛𝑔
𝑓𝑖 (𝑥), (2)

where 𝑛𝑔 is the number of data on all clients inside the group g.
Hence, the global loss function can be rewritten as

𝑓 (𝑥) =
∑︁
g∈G

𝑛𝑔

𝑛
𝑓𝑔 (𝑥) . (3)

At Line 15 of Algorithm 1, the global aggregation may lead to the

learned model biased since some groups have higher probability

to be sampled during the group sampling. This is true for our

design since we always give higher priority to groups with better

distribution to boost convergence. Therefore, we will discuss this

in Section 6. If the model is required to be unbiased, a correction

factor
1

𝑝𝑔𝑆
can be introduced and Line 15 is then replaced by

𝑥𝑡+1 =
∑︁
𝑔∈S𝑡

1

𝑝𝑔𝑆
·
𝑛𝑔

𝑛
𝑥
𝑔

𝑡,𝐾−1, (4)

where 𝑝𝑔 is the probability to sample the group g during the group

sampling and 𝑆 is the number of sampled groups in each round

𝑆 = |S𝑡 |. Note that 𝑛𝑡 in Line 15 of Algorithm 1 in the number of

data entries on the 𝑡-th global round.

3.2 Cost Model
To measure the Group-FEL learning cost, we focus on both com-

putation and communication loads on all clients. Each client has

two types of costs: training cost and group operation cost. The

built-in training cost H𝑖 (𝑛𝑖) of client 𝑐𝑖 measures the time needed

to iterate through its trainset once. Given the hardware, model, and

training hyperparameters are fixed, this cost is proportional to the

data sample number 𝑛𝑖 owned by this client. Overheads incurred

by group operations (both for secure or privacy-preserving com-

putation and communication) are quadratic to the group size |g|
[4, 28]. These two assumptions can be further confirmed by our

experiments shown in Fig. 8. Hereafter, we use O𝑔 (|g|) to denote
the group overhead of each client in group g. Note that this group
overhead cost is often ignored in the analysis of existing works.

By adding training costs and group operation costs of all clients in

each group, the total learning costs in the whole training process

can be measured by

O =

𝑇−1∑︁
𝑡=0

©­«
∑︁
g∈S𝑡

𝐾
∑︁
𝑐𝑖 ∈g

(O𝑔 (|g|) + 𝐸H𝑖 (𝑛𝑖))ª®¬. (5)

In our evaluations, we will measure the performance of all algo-

rithms using the achieved accuracy by certain learning costs instead

of the accuracy by the global round.

4 CONVERGENCE ANALYSIS
In this section, we will present our main theorem on the conver-

gence of Group-FEL with an emphasis on the group characters. This

result is an important theoretical contribution and also inspires the

design of our grouping formation and sampling schemes. The result

applies to all HFL structures where an intermediary aggregation

layer is used. The result is also general enough to cover existing

convergence results
2
.

2
When |S𝑡 | = |G |, it degrades to HFL without group sampling. When there is only

one group on each edge server, it degrades to the classic HFL.

Group-based Hierarchical Federated Learning: Convergence, Group Formation, and Sampling ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA

4.1 Assumptions
To boost theoretical analysis of convergence, previous works [29–

31] have made common assumptions about the local and global

loss functions. We simply borrow and list them here.

Assumption 1. Bounded variance of local gradient: for any
local loss function 𝑓𝑖 ,

∥∇𝑓𝑖 (𝑥 ; 𝜉𝑖) − ∇𝑓𝑖 (𝑥)∥2 ≤ 𝜎2 . (6)

Here 𝜉𝑖 denotes the data used to compute the gradient at client 𝑐𝑖 in a
certain round. Clients may not always use all data to calculate the
gradient, thus there is a variance compared to the full gradient.

Assumption 2. 𝐿-smoothness: for any local loss function 𝑓𝑖 (also
global loss function 𝑓),

∥∇𝑓𝑖 (𝑥) − ∇𝑓𝑖 (𝑦)∥ ≤ 𝐿∥𝑥 − 𝑦∥ . (7)

Assumption 3. Bounded local heterogeneity: for any local loss
function 𝑓𝑖 ,

∥∇𝑓𝑖 (𝑥) − ∇𝑓 (𝑥)∥2 ≤ 𝜁 2 . (8)

Assumption 4. Bounded group heterogeneity: the heterogene-
ity between any group loss function 𝑓𝑔 and global loss function 𝑓
satisfies

∥∇𝑓𝑔 (𝑥) − ∇𝑓 (𝑥)∥2 ≤ 𝜁 2𝑔 . (9)

Here 𝜁𝑔 is a constant that measures the heterogeneity between

any 𝑓𝑔 and 𝑓 . There is no practical way to compute 𝜁𝑔 and 𝐿 but it

is generally believed that 𝜁𝑔 relies on the difference between the

global and group data distributions, i.e., the more similar the two

distributions are, the smaller 𝜁𝑔 is. Note that although 𝜁𝑔 and 𝜁

are both on heterogeneity they are quite different in our design. 𝜁

reflects the heterogeneity caused by individual clients which cannot

be controlled, while 𝜁𝑔 is the heterogeneity of the formed groups. In

Group-FEL, if we can control the group formation smartly to
reduce 𝜁𝑔 , then the selected groups will be more IID, thus leading

to better performance.

4.2 Main Convergence Result
Theorem 1. The convergence rate of Group-FEL is bounded as

follows,

1

𝑇

𝑇−1∑︁
𝑡=0

∥∇𝑓 (𝑥𝑡)∥2 ≤ 𝑓 (𝑥0) − E[𝑓 (𝑥𝑇)]
𝜆1𝜂𝑇𝐾𝐸

+
𝜆𝑠 ·

Γ𝑝
|S𝑡 |

𝜆1𝑇𝐾𝐸

+
𝛾Γ(𝜆2𝜎2 + 𝜆3𝜁 2 + 𝜆4𝜁 2𝑔)

𝜆1𝑇
. (10)

Here 𝛾, Γ, Γ𝑝 and constants 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆𝑠 , 𝜆𝜎 , 𝜆𝑓 are defined or con-
strained by following (to simplify the expression of the final result in
the proofs)

𝛾 =|g|2 [1

|g|2
+𝑉𝑎𝑟 (𝑛𝑖

𝑛𝑔
)], (11)

Γ =|G|2 [1

|G|2
+𝑉𝑎𝑟 (

𝑛𝑔

𝑛
)], Γ𝑝 ≥

∑︁
g∈G

1

𝑝𝑔
, (12)

𝜆𝑠 =𝜂𝛾Γ𝐾
2 (1 + 10𝜂2𝐸2𝐿2𝜎2), (13)

0 < 𝜆1 ≤ 1

2

− 3𝜆𝑓 𝜂𝛾Γ𝐾𝐸𝐿
2, (14)

𝜆2 =3𝜆𝜎𝛾𝐿
2 + 5𝜂2𝐸2𝐿2, 𝜆3 = 2700𝜂4𝛾𝐾2𝐸4𝐿2, (15)

𝜆4 =90𝜂
2𝐾2𝐸2𝐿2, 𝜆𝑓 = 30𝜂2𝐾2 (1 + 90𝛾𝜂2𝐸2𝐿2), (16)

𝜆𝜎 =5𝐾𝜂2𝐸2 [1 + ((1 + 6𝐾)𝐸 + 9𝐾)10𝜂2𝐸𝐿2 + 18𝐾

|g|𝐸], (17)

0 ≥𝜂2 − 𝜂

2𝐾𝐸
. (18)

Proof. Due to the space limit, we cloud not include all proof

details. Here we only present a brief proof skeleton, andmore details

will be provided as a technical report. First, we consider another

form of Assumption 2, as

𝑓 (𝑦) ≤ 𝑓 (𝑥) + ⟨∇𝑓 (𝑥), (𝑦 − 𝑥)⟩ + 𝐿
2

∥𝑥 − 𝑦∥2 . (19)

Based on this smoothness assumption, we can have

E [𝑓 (𝑥𝑡+1)] ≤𝑓 (𝑥𝑡) − 𝜂𝐾𝐸∥∇𝑓 (𝑥𝑡)∥2 +
𝐿

2

E𝑡 ∥Δ𝑡 ∥2

+⟨∇𝑓 (𝑥𝑡),E𝑡 [Δ𝑡 + 𝜂𝐾𝐸∇𝑓 (𝑥𝑡)]⟩, (20)

where Δ𝑡 = 𝑥𝑡+1 − 𝑥𝑡 =
∑
g∈S𝑡

𝑛𝑔
𝑛𝑡

∑𝐾−1
𝑘=0

𝜂∇𝐹𝑔 (𝑥𝑡,𝑘) is the global
update at the round 𝑡 and 𝐹𝑔 (𝑥) =

∑
𝑖∈g

𝑛𝑖
𝑛𝑔

∑𝐸−1
𝑒=0 𝑓𝑖 (𝑥𝑒) is single

round group update.

By defining 𝐴1 = ⟨∇𝑓 (𝑥𝑡),E𝑡 [Δ𝑡 + 𝜂𝐾𝐸∇𝑓 (𝑥𝑡)]⟩ and 𝐴2 =

E𝑡 ∥Δ𝑡 ∥2, we can rewrite Equ. (20) as

E [𝑓 (𝑥𝑡+1)] ≤ 𝑓 (𝑥𝑡) − 𝜂𝐾𝐸∥∇𝑓 (𝑥𝑡)∥2 +𝐴1 +
𝐿

2

𝐴2 . (21)

Then we bound 𝐴1 and 𝐴2 by proving Lemma ?? and Lemma 2,

respectively. Bringing such bounds into Equ. (21), we then have

E [𝑓 (𝑥𝑡+1)] ≤ 𝑓 (𝑥𝑡) − 𝜂𝐾𝐸 (
1

2

− 3𝜆𝑓 𝜂𝛾Γ𝐾𝐸𝐿
2)∥∇𝑓 (𝑥𝑡)∥2 + 𝜆2𝜂𝐾𝐸𝛾Γ𝜎2

+ 𝜆3𝜂𝐾𝐸𝛾Γ𝜁 2 + 𝜆4𝜂𝐾𝐸𝛾Γ𝜁 2𝑔 +
𝜂2𝛾ΓΓ𝑝𝐾

2

|S𝑡 |
(1 + 10𝜂2𝐸2𝐿2𝜎2)

+ (𝜂2 − 𝑛

2𝐾𝐸
)E𝑡

∥
∑︁
𝑔∈G

𝑛𝑔

𝑛

𝐾−1∑︁
𝑘=0

∇𝐹𝑔 (𝑥𝑔𝑡,𝑘)∥
2

 . (22)

With conditions of Equ. (13), (14), and (18), we can show

E [𝑓 (𝑥𝑡+1)] ≤ 𝑓 (𝑥𝑡) − 𝜆1𝜂𝐾𝐸∥∇𝑓 (𝑥𝑡)∥2

+ 𝜂𝛾Γ𝐾𝐸 (𝜆2𝜎2 + 𝜆3𝜁 2 + 𝜆4𝜁 2𝑔) + 𝜂 · 𝜆𝑠 ·
Γ𝑝

|S𝑡 |
. (23)

Finally, by rearranging and telescoping, we have

1

𝑇

𝑇−1∑︁
𝑡=0

∥∇𝑓 (𝑥𝑡)∥2 ≤ 𝑓 (𝑥0) − E[𝑓 (𝑥𝑇)]
𝜆1𝜂𝑇𝐾𝐸

+
𝜆𝑠 ·

Γ𝑝
|S𝑡 |

𝜆1𝑇𝐾𝐸
+
𝛾Γ(𝜆2𝜎2 + 𝜆3𝜁 2 + 𝜆4𝜁 2𝑔)

𝜆1𝑇
.

□

Lemma 2. Under the assumptions and conditions in Theorem 1,𝐴1

is bounded as follows

𝐴1 ≤ 𝜂𝐾𝐸 (1
2

+ 90𝜂3𝛾Γ𝐾3𝐸3𝐿2)∥∇𝑓 (𝑥𝑡)∥2 + 𝜆2𝜂𝐾𝐸𝛾Γ𝜎2 + 𝜆3𝜂𝐾𝐸𝛾Γ𝜁 2

+ 𝜆4𝜂𝐾𝐸𝛾Γ𝜁 2𝑔 − 𝜂

2𝐾𝐸
E𝑡

∥
∑︁
𝑔∈G

𝑛𝑔

𝑛

𝐾−1∑︁
𝑘=0

∇𝐹𝑔 (𝑥𝑔𝑡,𝑘)∥
2

 . (24)

Lemma 3. Under the assumptions and conditions in Theorem 1,𝐴2

is bounded as follows

𝐴2 ≤ 𝜂2E𝑡
∥

∑︁
𝑔∈G

𝑛𝑔

𝑛

𝐾−1∑︁
𝑘=0

∇𝐹𝑔 (𝑥𝑔𝑡,𝑘)∥
2

 +
𝜂2𝛾ΓΓ𝑝𝐾

2

|S𝑡 |
(1 + 10𝜂2𝐸2𝐿2𝜎2) .

(25)

Proofs of these two lemmas are ignored due to the space limit.

Recall that 𝑇 , 𝐾 , 𝐸, and 𝜂 are the number of global rounds, the

number of group rounds in each global round, the number of local

rounds in each group round, and the learning rate in local updating,

ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Liu et al.

respectively, as defined in Algorithm 1. The inequality (Equ. 10)

tells us that when the right-hand side is diminishing as 𝑇 increases

(more global rounds), the gradient norm ∥∇𝑓 (𝑥𝑡)∥ tends to be zero,
which means the model converges to a local minimum.

4.3 Key Observations
From the main theorem, we have the following observations.

First, the heterogeneity 𝜁𝑔 between the combined group loss

function 𝑓𝑔 and the global loss functions 𝑓 plays a role in conver-

gence. With a larger heterogeneity, the convergence will be slower.

Therefore, in our proposed group formation and group sampling

schemes, we aim to reduce this heterogeneity. Unfortunately, the

definition of 𝜁𝑔 is not straightforward and we cannot directly com-

pute it to quantify the heterogeneity. Therefore, instead, we use

the difference between data distributions to measure how analo-

gous two loss functions are. Concretely, we use the Coefficient of
Variance (CoV) of the labels in a group, which will be discussed in

the next section. The CoV-based grouping algorithm bridges this

observation to our system design.

Second, the larger variance of sampling vector p (thus larger

Γ𝑝) may also delay the convergence of unbiased sampling. Due to

the unbiasedness factor
1

𝑝𝑔 |S𝑡 | , any
1

𝑝𝑔
should not be too large,

otherwise the aggregation is numerically unstable:
1

𝑝𝑔
extremely

amplifies the gradient and ruins all previous training results. On

the other hand, we want to be able to set arbitrary p to prioritize

good groups with smaller 𝜁𝑔 . To handle this, when we adopt unbi-

ased aggregation together with prioritized sampling, we will use

a normalization method (see Section 6). Note that p may also en-

tangle with 𝜁𝑔 , 𝛾 , and other group-specific characters as it decides

which groups participate in the training more, and therefore their

characters affect the FL system more.

Last, to boost convergence, we need a smaller 𝛾 . We find that

𝛾 − 1 = |g|2𝑉𝑎𝑟 (𝑛𝑖𝑛𝑔) = (𝜎𝑐𝜇𝑐)
2
, where 𝜎𝑐 and 𝜇𝑐 are the standard

deviation and mean of the total data sample number among clients

within the same group. Interestingly, 𝛾 − 1 is also the square of CoV

of data sample number within the group. Γ has a similar property.

Reducing 𝛾 also helps to converge faster and smoother. We leave

further considering this in our design as one of the future works.

5 GROUP FORMATION
In Group-FEL, how to perform group formation is critical since 𝜁𝑔
plays an important role in convergence (as suggested by the first

key observations). Again, note that 𝜁𝑔 depends on the difference

between the in-group data distributions and the global data dis-

tribution, and a good group formation method helps to reduce 𝜁𝑔 .

Therefore, in this section, we first discuss the possible grouping

criteria and then present our proposed grouping method.

5.1 Grouping Criteria: CoV
Based on the key observation from our convergence analysis, the

principle of grouping criteria should be to make the group loss

functions as similar to the global loss function as possible (i.e., sim-

ilar data distribution and smaller 𝜁𝑔). In general, the properties of

a loss function are closely related to its data distributions. There-

fore, our grouping criteria aims to measure the similarity of data

distributions between group and global. We further assume the

global data are evenly distributed, thus we can just focus on the

data distribution within each local group. To do so, we introduce

the coefficient of variation (CoV) of the labels in a group.

Here we focus on the grouping of a client set K , whose 𝑖-th

client is 𝑐𝑖 . The data label set Y contains 𝑚 kinds of labels. We

define a label matrix L, where L𝑖, 𝑗 is the number of 𝑗-th category

of data samples on 𝑖-th client. Then, a grouping G ofK is a partition

of K . Let G𝑙 be the 𝑙-th group in G, which contains all clients in

this group. To compute the CoV of a group, we only need to know

the data label distributions from users in that group, without any

information of their local data, model, nor gradient.

Ideally, we would like the distribution of every group G𝑙 is iden-
tical to the global distribution, i.e.,∑

𝑐𝑖 ∈G𝑙
L𝑖, 𝑗∑

𝑐𝑖 ∈G𝑙

∑
𝑘∈Y L𝑖,𝑘

=

∑
𝑐𝑖 ∈K L𝑖, 𝑗∑

𝑐𝑖 ∈K
∑
𝑘∈Y L𝑖,𝑘

, ∀𝑗,∀𝑙 . (26)

However, such restricted criteria might lead to infeasible grouping.

Thus, instead, we use the coefficient of variation as the grouping

criterion. For a given group g, we calculate its coefficient of variation

(CoV) in the following way

𝐶𝑜𝑉 (g) = 𝜎 (g)
𝜇 (g) =

√︂∑
𝑗 ∈Y

(
𝑛𝑔
𝑚 −∑

𝑐𝑖 ∈g L𝑖, 𝑗
)
2

𝑛𝑔
. (27)

𝜎 (g) =

√︂∑
𝑗 ∈Y

(
𝑛𝑔
𝑚 −∑

𝑐𝑖 ∈g L𝑖, 𝑗
)
2

𝑚
. (28)

Recall that𝑛𝑔 is the number of data samples in the group and𝑚 is the

number of labels (data samples types). The reason why the variance

(i.e., 𝜎2 (g)) is not suitable as the criterion is that it is susceptible to

the scale of data number. For example, a group with a smaller total

data number but larger data distribution skew may have a smaller

variance than a group with more data but smaller distribution skew.

We may prefer the latter group but, on the contrary, the smaller

variance criterion prefers the first one. Note that neither variance

nor CoV has been considered in previous works on client grouping

at edge learning.

5.2 Group Formation Problem
The group formation problem aims to divide all clients associated

with an edge server into multiple client groups such that the sum-

mation of CoVs of all groups is minimized. We can use matrices to

more succinctly express this grouping problem. Suppose we have

three matrices 𝐴, 𝑋 , and 𝐵, where 𝐴 𝑗𝑖 is the number of label type

𝑗 that client 𝑐𝑖 possesses; 𝑋𝑖𝑙 is the grouping decision indicator

where 𝑋𝑖𝑙 = 1 if the client 𝑐𝑖 is in the group G𝑙 , otherwise 0; 𝐵 𝑗𝑙
is the number of data type 𝑗 in group 𝑙 . Then the group formation

problem can be formulated as the following optimization problem:

min

𝑋

∑︁
𝑙

√︂∑
𝑗

(∑
𝑗 𝐵 𝑗𝑙

𝑚 − 𝐵 𝑗𝑙
)
2∑

𝑗 𝐵 𝑗𝑙
(29)

s.t. 𝐴𝑋 = 𝐵, (30)∑︁
𝑖

𝑋𝑖𝑙 ≥ 𝑀𝑖𝑛𝐺𝑆, ∀𝑙, (31)∑︁
𝑙

𝑋𝑖𝑙 = 1, ∀𝑖, (32)

𝑋𝑖𝑙 ∈ {0, 1}, ∀𝑖,∀𝑙 . (33)

Group-based Hierarchical Federated Learning: Convergence, Group Formation, and Sampling ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA

Figure 4: Example of CoV-Grouping at edge.

Constraint (31) is an anonymity constraint to make sure that each

group at least has 𝑀𝑖𝑛𝐺𝑆 clients
3
, while Constraint (32) ensures

that a client will be grouped into one and only one group.

Fig. 4 illustrates a simple toy example. This edge server has four

clients and all wants to form a group with at least two clients. As

shown in the figure, though two different grouping methods can

both formulate two groups each with two clients, the total CoVs are

quite different. In our design, we would prefer the one with lower

CoVs (Fig. 4(b)).

5.3 Grouping Algorithm: CoV Grouping
Directly solving the above grouping optimization is not easy. Note

that the grouping problem with a fixed number of groups is a

variation of the k-mean clustering problem, which is known as

NP-hard [32, 33]. Therefore, we design a greedy algorithm (CoV-

Grouping) to generate an approximating solution. It generates

groups one by one until no more groups are possible. For each

group, it first randomly picks a client, then greedily adds clients

one by one. When adding a new client to the current group, it tries

every possible client and adds the one that reduces the group CoV

the most (Line 5). If no one meets this criterion and the group size

is large enough (reach 𝑀𝑖𝑛𝐺𝑆), then this group is finalized and

the algorithm starts the next group. In addition, besides checking

the group size constraint 𝑀𝑖𝑛𝐺𝑆 , we also add a maximum CoV

requirement (𝑀𝑎𝑥𝐶𝑜𝑉) which makes sure the resulting group CoV

is smaller than𝑀𝑎𝑥𝐶𝑜𝑉 4
. Algorithm 2 shows the details.

Algorithm 2 CoV-Grouping

Input: Client set K , min group size𝑀𝑖𝑛𝐺𝑆 , and𝑀𝑎𝑥𝐶𝑜𝑉 .

Output: Group set G.

1: G = ∅
2: while K ≠ ∅ do
3: Find a random 𝑐 ∈ K , g = {𝑐}, K = K\𝑐 . ⊲ a new group
4: while (CoV(g) > 𝑀𝑎𝑥𝐶𝑜𝑉 or |g| < 𝑀𝑖𝑛𝐺𝑆) andK ≠ ∅ do

⊲ not meet the group requirement yet
5: Find 𝑐 ∈ K that minimizes CoV(g ∪ 𝑐)
6: if CoV(g ∪ 𝑐) < CoV(g) or |g| < 𝑀𝑖𝑛𝐺𝑆 then
7: g = g ∪ 𝑐 , K = K\𝑐 ⊲ add 𝑐 to current group
8: else ⊲ no suitable 𝑐 and enough group size
9: break ⊲ finalize current group
10: G = G ∪ g ⊲ add finalized group
11: return G

3
The minimum group size𝑀𝑖𝑛𝐺𝑆 can make sure that the secure group operation can

protect the model/data privacy of its clients. Here we assume the requirement is a

controllable constant for our system, but this can be easily extended to the case where

each client has its own group size requirement.

4
This is not a hard constraint, i.e., the algorithm only tries to adding clients until the

CoV is satisfied, but sometimes it might be infeasible to reach lower than𝑀𝑎𝑥𝐶𝑜𝑉 ,

then it just gives up adding more clients and finalize this group (Line 9 of Algorithm 2).

200 400 600 800 1000
Number of Clients

0

20

40

60

Ti
m

e
(s

)

RG
CDG
KLDG
CoVG

Figure 5: Running time of
grouping methods.

1 2 3 4
Avg. CoV

0.2

0.4

0.6

0.8

1.0

Av
g.

 G
ro

up
 O

ve
rh

ea
d RG

CDG
KLDG
CoVG

Figure 6: CoV v.s. average
group overhead.

The time complexity of Algorithm 2 is 𝑂 (|K |3 |Y|) where |K |
and |Y| are the number of clients and the number of label types,

respectively. First, Line 5 is executed at most 𝑂 (|K |) times. Then,

in each execution, it implicitly calls𝐶𝑜𝑉 () at most𝑂 (|K |) times to

try every possible client. Last, the complexity of function 𝐶𝑜𝑉 ()
is 𝑂 (|g| |Y|) = 𝑂 (|K ||Y|). Thus, the total time complexity of CoV-

Grouping is𝑂 (|K |3 |Y|). Given |Y| is usually a fixed small number

for a given task (e.g., 10 for CIFAR-10, 35 for SpeechCommand),

the time complexity becomes 𝑂 (|K |3). This is cubic to the client

number associated with the edge server but irrelevant to the data

amount owned by clients.

5.4 Compared with Other Grouping Algorithms
We now compare our algorithm with two existing solutions: cluster-

ing then distribution grouping (CDG, used by OUEA [13]) and KLD

grouping (KLDG, used by SHARE [14]), as well as random grouping

(RG). Fig. 5 shows the time consumed by each algorithm to group

different numbers of clients. We can see that RG can group 1, 000

clients at almost no cost (less than 0.3 seconds). CDG has similar

efficiency to RG (around 1 second). KLDG is inefficient because i) its

time complexity is 𝑂 (|K |4 |Y|); ii) it frequently calculates the KLD,

which needs the expensive operation floating-point 𝑙𝑜𝑔(). On the

contrary, calculating CoV only involves addition and multiplication,

which are much cheaper than 𝑙𝑜𝑔(). That is why CoVG is able to

group 1, 000 clients in 6 seconds.

We then compare the quality of the grouping results of these

four algorithms. Fig. 6 shows a result more directly related to our

concerned question: how do different grouping algorithms affect

the learning cost and accuracy? With the same cost (i.e., group

overhead), CoVG always gives us the best groups with lower CoV

(i.e., higher IID degree), which implies better training accuracy.

Similarly, to achieve the same level of CoV (i.e., accuracy), CoVG

saves us costs. We will present more details about this implication

by experiments in Section 7.

6 GROUP SAMPLING
We now discuss our group sampling method, deployed in the cloud

as in Fig. 3, which is a probability-based sampling. Each group

g is sampled based on a probability p𝑔 . The key problem is the

sampling criteria, i.e., how to compute the sampling probability,

which groups should be sampled more frequently, and how frequent

it should be. Existingworks in FL already consideredmany sampling

criteria to improve the system performance in specific aspects.

For example, [24] considers both training time and gradient in

sampling to speed up the training. Since now we have the group

CoV, it is reasonable to design new sampling methods based on

CoV to improve the system performance. In this section, we discuss

ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Liu et al.

the possible sampling methods and how to better utilize them. As

group heterogeneity widely exists in HFL systems, our designs and

observations here are also applicable to other HFL systems.

6.1 Sampling Criteria
Obviously, the probability vector p should satisfy

∑
𝑔 p𝑔 = 1. Based

on the sampling probability, our system select groups in each global

iteration. LetS𝑡 be the selected group set in the 𝑡-th global iteration.
Similar to our group formation method, our grouping sampling

method tends to select those groups whose data are combined IID.

Recall that 𝐶𝑜𝑉 (g) is the CoV of the group g, and a larger 𝐶𝑜𝑉 (g)
means a more biased data distribution in this group. Then, we can

compute p in the following way:

𝑝𝑔 =
𝑤 (1

𝐶𝑜𝑉 (g))∑
g∈G 𝑤 (1

𝐶𝑜𝑉 (g))
, (34)

where𝑤 () can be a non-decreasing function. The rationale behind

this formula is i)𝑤 () reflects the importance of each group but CoV

means how bad a group is so we should inverse it in𝑤 (); 𝑝𝑔 is the
probability so it is in the format of𝑤 ()/∑𝑤 () (so all of them sum

to 1). We find that the choice of 𝑤 () also has an impact on the

result. We consider three choices
5
:𝑤 (𝑥) = 𝑥 , 𝑥2, and 𝑒𝑥2 , and use

RCoV, SRCoV and ESRCoV to denote them. Such sampling methods

will be used as Sampling-Prob(G) in Algorithm 1 to generate p.
Fig. 7 shows the accuracy achieved by these three sampling meth-

ods. Overall, the more we emphasize CoV in sampling, the smoother

and faster the convergence is. In this set of experiments, we select

12 groups among 60 client groups based on their CoV values in each

round. In general, the more we emphasize CoV, the less frequently

those groups with larger CoV are sampled, hence actually less di-

verse the sampled groups are during the whole training process.

It seems that this contradicts better performance with more data.

But the key reason is that those groups with larger CoV values can

have a smaller or even negative impact on convergence as shown

in our theoretical analysis. Such results show a similar implication

as the second key observation, i.e., more frequently sampled groups

tend to dominate the characters of the whole HFL system. Though

we yet can not, and it is hard to rigorously confirm this conjecture.

This also confirms that the CoV is capable of properly capturing the

distribution skew. In our experiments in Section 7, we use ESRCoV

sampling as our default CoV sampling method for our methods,

since it has the best performance.

If we would like to utilize the remaining data in those client

groups with larger CoV values, one possible solution is regrouping

clients (rerunning the group formation algorithm) after a certain

number of global iterations. In that case, our design of randomly

selecting the first client for each group in CoV-Grouping becomes

critical and useful.

6.2 Handling the Unbiased Factor
As aforementioned in Section 4, Γ𝑝 or (

1

𝑝𝑔
) can be infinitely large

especially when𝑤 () amplifies the impact of CoV on sampling and

5
We choose these three functions, since they amplify the impact of CoV from less to

more: the first differs but not much from random selection; the last is close to always

selecting the groups with the top CoVs; the middle one is between them. Although

one may more elaborately select the function, we simply choose these to show how

the learning result varies w.r.t. the sampling function, and our results next confirm

that they are at least sufficient for our purpose.

the unbiasedness factor is introduced. Meanwhile, to prioritize the

good groups, we hope to assign them a much higher probability

(as shown in the comparison of different𝑤 ()). Therefore, when we

need to adopt the two mechanisms at the same time, the model is

likely to diverge. To avoid catastrophic numerical instability, we

will use stabilized aggregation, by normalizing the weights in the

following way

𝑤𝑒𝑖𝑔ℎ𝑡 (g) =
1

𝑝𝑔 |S𝑡 |
𝑛𝑔
𝑛∑

𝑔∈S𝑡

1

𝑝𝑔 |S𝑡 |
𝑛𝑔
𝑛

. (35)

Such weights will replace

𝑛𝑔
𝑛𝑡

at Line 15 of Algorithm 1. Note that

we cannot guarantee that the aggregation is still unbiased after

using this normalization. Thus, there is always a trade-off. In addi-

tion, when the number of selected groups |S𝑡 | is close to or even
larger than the number of good client groups we have, we will have

to select some groups with small 𝑝𝑔 , then they will dominate the

aggregation because they have large
1

𝑝𝑔
. Therefore, the selection

of |S𝑡 | needs to be carefully set in practice. This can be done be-

fore starting the training, by peeking at the grouping result (the

sampling probability), as we always have it prior to training.

7 PERFORMANCE EVALUATIONS
In this section, we report detailed performance evaluations of our

proposed Group-FEL method via experiments.

7.1 Experiments Setup
Baselines: Upon the selection of baselines, we consider the fol-

lowing three types of related methods: training-based methods

(FedProx [6] and SCAFFOLD [7]), client-edge(aggregator) associa-

tion based methods (CDG from OUEA [13] and KLDG from SHARE

[14]), and a clustering method for personalized FL (FedCLAR [12]).

Classical FedAvg [3] is also included for reference. Note that the

reason why we include FedCLAR is to show that personalized FL

is not suitable for training a good global model. CDG and KLDG

are originally designed for edge association in HFL, we adopt their

basic ideas and port them to group formation algorithms. For a fair

comparison, we tune all grouping algorithms so that they tend to

generate similar group sizes.

Datasets and ML Models/Tasks:We use both CIFAR-10 [35]

and Speech Commands (SC) [34] as our training datasets. CIFAR-

10 is a popular image classification dataset containing 10 types

of pictures. For this dataset, a 3-block ResNet is used to represent

relatively heavy load tasks. The Speech Commands dataset contains

35 types of audio commands and is used for command recognition.

For this task, we adopt a 5-layer convolutional neural network

(CNN) that is easy to train on RPi to represent lightweight tasks. (as

shown in Fig. 8). Both image classification and audio recognition

are typical edge AI applications.

Total Cost Emulation: As mentioned in Section 3.B, we evalu-

ate the total learning costs based on Equ. (5). To describe the cost

of group operations more accurately, we conduct group-based FEL

experiments on RPi 4 devices with both CIFAR10 and SC to extract

O𝑔 () andH𝑖 () according to the collected measurements. Here, all

costs are measured by time. As shown in Fig. 8, the original version

of secure aggregation (SecAgg) and SCAFFOLD (+SecAgg) [7] are

the most costly operation. We use them to estimate different qua-

dratic cost functions for each method and then emulate the costs

Group-based Hierarchical Federated Learning: Convergence, Group Formation, and Sampling ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA

0.0 0.2 0.4 0.6 0.8 1.0
Cost 1e6

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Random
RCoV
SRCoV
ESRCoV

Figure 7: Diff. sampling methods:
RCoV, SRCoV, ESRCoV & Random.

0 10 20 30 40 50
Data/Client Number

0

10

20

30

40

50

Ti
m

e
(s

)

CIFAR Training
CIFAR Backdoor Detection
CIFAR SecAgg
CIFAR SCAFFOLD SecAgg
SC Training
SC Backdoor Detection
SC SecAgg
SC SCAFFOLD SecAgg

Figure 8: Overhead measurement over
Raspberry PI.

0 50 100 150 200
Global Round

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Ac
cu

ra
cy FedAvg

FedProx
SCAFFOLD
Group-FEL
OUEA
SHARE
FedCLAR

Figure 9: Accuracy vs iteration - all
methods over CIFAR-10.

0.0 0.2 0.4 0.6 0.8 1.0
Cost 1e6

0.3

0.4

0.5

0.6

Ac
cu

ra
cy FedAvg

FedProx
SCAFFOLD
Group-FEL
OUEA
SHARE
FedCLAR

Figure 10: Accuracy vs cost - CIFAR10.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Cost 1e5

0.0

0.1

0.2

0.3

0.4
Ac

cu
ra

cy
FedAvg
FedProx
SCAFFOLD
Group-FEL
OUEA
SHARE
FedCLAR

Figure 11: Accuracy vs cost - SC.

0.0 0.2 0.4 0.6 0.8 1.0
Cost 1e6

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

CoVG+RS
RG+CoVS
CoVG+CoVS
KLDG+RS
KLDG+CoVS

Figure 12: Diff. grouping & sampling.

of group operations in our experiments. Note that other types of

group operations can be easily integrated in the future.

HFL Environment: All training and testing of FL models are

performed in a virtual environment developed by our group on a

server with 40 cores, 512 GB RAM, 8 × NVIDIA Tesla V100. The

total costs are computed using O𝑔 () and H𝑖 () according to the

grouping/sampling methods and generated results.

7.2 Performance of Group-FEL
We first test the performance of our design (Group-FEL) with differ-

ent values of the key hyperparameter𝑀𝑎𝑥𝐶𝑜𝑉 and different data

heterogeneity (i.e., 𝛼). We split CIFAR-10 data to 300 clients with

20 to 200 (normal distribution, restricted by the available data of

CIFAR-10) data entries each. On each client, the labels follow the

Dirichlet distribution with parameter 𝛼6. We use three edge servers

and each of them has 100 clients.

The budget is set as 10
6
unit, which is sufficient for the model to

converge. Table 1 shows the detailed performances, including the

range and average of group sizes generated, the average group𝐶𝑜𝑉 ,

and the achieved accuracy, when 𝐾 = 5, 𝐸 = 2, and 𝑀𝑖𝑛𝐺𝑆 = 5.

Clearly, with larger 𝑀𝑎𝑥𝐶𝑜𝑉 (that allows more skewed distribu-

tions), our method generates smaller groups with larger group

𝐶𝑜𝑉 . Note that smaller group 𝐶𝑜𝑉 (more balanced data) does not

necessarily lead to higher accuracy as it may require larger group

sizes and hence higher overhead. When the data is more IID (larger

𝛼), smaller 𝑀𝑎𝑥𝐶𝑜𝑉 leads to better accuracy because we can now

have more IID groups with small sizes. However, when the data is

skewed, larger𝑀𝑎𝑥𝐶𝑜𝑉 may be better. Overall, with less skewed

data (larger 𝛼), our method can achieve better accuracy.

6
This is adopted by many previous works on non-IID FL, such as [36]. In general,

smaller 𝛼 means more skewed data.

𝛼 MaxCoV GS [min,max](avg) Avg. CoV Accu

0.1
0.1 [6, 19](10.96) 0.28 56.68%

0.5 [5, 11](6.13) 0.43 59.80%

1.0 [5, 6](5.03) 0.54 60.56%

0.5
0.1 [5, 11](7.66) 0.19 64.11%

0.5 [5, 9](5.23) 0.25 63.40%

1.0 [5,5](5.00) 0.29 65.02%

1.0
0.1 [5, 19](6.95) 0.15 65.08%
0.5 [5, 6](5.02) 0.20 64.85%

1.0 [5, 5](5.00) 0.20 64.45%

Table 1: Performance of Group-FEL: Group Size (GS), Group
CoV, and Accuracy for different 𝛼 and𝑀𝑎𝑥𝐶𝑜𝑉 .

7.3 Comparison with Existing Methods
7.3.1 Against Baselines over CIFAR-10. Next, we compare ourmethod

with the selected baselines, classical FedAvg [3], FedProx [6], SCAF-

FOLD [7], OUEA[13], SHARE[14], and FedCLAR[12]. For fairness,

they are all modified to a hierarchical version (if not originally)

with uniform group sampling. FedAvg, FedProx, and SCAFFOLD

use random grouping, while FedCLAR uses random grouping at

the beginning and then performs its clustering method at a specific

round. OUEA uses its CDG algorithm (Algorithm 1 in [13]) and

SHARE uses its KLD-based grouping. Fig. 9 shows the results of

accuracy over global iterations on CIFAR-10. We can see that our

method outperforms all baselines while the baselines do not differ

much from each other. Note that the accuracy of FedCLAR drops

after clustering since it is designed for personalized FL and is not

suitable for training the global model. Fig. 10 shows the same results

over the corresponding training cost. Clearly, our method advances

even more in this measurement. With the same training cost, our

ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Liu et al.

proposed method can achieve significantly higher accuracy. The

reason is that FedProx and SCAFFOLD demand more computation

(both) and communication (SCAFFOLD) in each round; OUEA and

SHARE, even though we tune their group size, still generate some

costly groups as they do not control the group size. Compared with

Fig 9, Fig. 10 can illustrate the critical advance of our proposed

method over existing FL solutions more clearly.

7.3.2 Performances over Speech Command. Wealso conduct similar

experiments over the Speech Command (SC) dataset, in which there

are 35 types of commands. We set 𝛼 = 0.01, which means the data

on each client is extremely skewed: the data on each client are

mainly dominated by less than 5 types of data. We set𝑀𝑖𝑛𝐺𝑆 = 15

for all and no𝑀𝑎𝑥𝐶𝑜𝑉 constraint. Fig. 11 shows the results. Clearly,

the convergence is unstable due to the serious inconsistency (large

𝜁). In general, we can observe similar results as those on CIFAR-10

(our method is the best).

7.3.3 Impacts of Group Formation and Group Sampling. Finally,
we investigate the impacts of group formation and group sampling

in our proposal methods. Fig. 12 shows different combinations

of group formation methods (random grouping (RG), KLD-based

grouping (KLDG), and our proposed CoV grouping (CoVG)) and

group sampling methods (random sampling (RS) and our proposed

CoV sampling (CoVS)). CDG is omitted as it does not show a signif-

icant difference from RG. The key observation from this result is

the advantage of the proposed methods is more clear when both

CoVG and CoVS are used together. When only CoVG is adopted

and random sampling is used, the good groups are not prioritized

so they do not have much impact on the learning result. Compared

with the performance of our method (CoVG+CoVS), we can see

CoVS indeed adding a significant advantage over CoVG. When

CoVS is adopted alone, the quality of prioritized groups is not fun-

damentally better than others due to poor grouping. We repeat this

set of experiments on the SC dataset and observe similar results.

Therefore, our recommendation is to use both CoVG and CoVS as

we did in our Group-FEL.

8 CONCLUSION
In this paper, we first address the issue of group formation in group-

based HFL, which is critical due to the widely adopted group oper-

ations (for privacy and security) and remains unsolved. We demon-

strate through both theoretical and empirical results that the group

size and group data distribution are key factors for group formation

in group-based HFL and have a significant impact on its conver-

gence and total cost. To address this, we design a greedy grouping

algorithm based on group CoV to reduce group size while main-

taining the group data relatively IID. Group sampling methods for

CoV-aware groups are also proposed and analyzed. Through ex-

tensive experiments, we show that current popular FL algorithms

do not perform well in HFL, and our methods outperform them

in all cases. We believe that our proposed Group-FEL can support

more intelligent applications via edge computing and mobile AI.

In future work, we plan to explore ways to enhance the proposed

grouping formation and sampling strategies by considering 𝛾 , re-

lated to the CoV of data sample amount among clients, and to

maintain client/data fairness in the proposed group-based HFL.

REFERENCES
[1] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud hierarchical feder-

ated learning,” in Proc. of IEEE ICC, 2020.
[2] K. Bonawitz, H. Eichner, et al., “Towards federated learning at scale: System

design,” Proc. of MLSys, vol. 1, pp. 374–388, 2019.
[3] B. McMahan, E. Moore, et al., “Communication-efficient learning of deep net-

works from decentralized data,” in Proc. of AIStats, 2017.
[4] K. Bonawitz, V. Ivanov, et al., “Practical secure aggregation for privacy-preserving

machine learning,” in Proc. of ACM CCS, 2017.
[5] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning

with non-IID data,” arXiv preprint arXiv:1806.00582, 2018.
[6] T. Li, A. K. Sahu, et al., “Federated optimization in heterogeneous networks,” Proc.

of MLSys, vol. 2, pp. 429–450, 2020.
[7] S. P. Karimireddy, S. Kale, et al., “Scaffold: Stochastic controlled averaging for

federated learning,” in Proc. of ICML, 2020.
[8] T. Yu, E. Bagdasaryan, and V. Shmatikov, “Salvaging federated learning by local

adaptation,” arXiv preprint arXiv:2002.04758, 2020.
[9] F. Chen, M. Luo, Z. Dong, Z. Li, and X. He, “Federated meta-learning with fast

convergence and efficient communication,” arXiv preprint arXiv:1802.07876, 2018.
[10] A. Ghosh, J. Hong, D. Yin, and K. Ramchandran, “Robust federated learning in a

heterogeneous environment,” arXiv preprint arXiv:1906.06629, 2019.
[11] M. Luo, F. Chen, et al., “No fear of heterogeneity: Classifier calibration for feder-

ated learning with non-IID data,” in Proc. of NeurIPS, 2021.
[12] R. Presotto, et al., “Fedclar: Federated clustering for personalized sensor-based

human activity recognition,” in Proc. of IEEE PerCom, 2022.

[13] N. Mhaisen, et al., “Optimal user-edge assignment in hierarchical federated

learning based on statistical properties and network topology constraints,” IEEE
Trans. on Network Science and Engineering, vol. 9, no. 1, pp. 55–66, 2021.

[14] Y. Deng, et al., “SHARE: Shaping data distribution at edge for communication-

efficient hierarchical federated learning,” in Proc. of IEEE ICDCS, 2021.
[15] J. Wang, Q. Liu, et al., “Tackling the objective inconsistency problem in heteroge-

neous federated optimization,” in Proc. of NeurIPS, 2020.
[16] Z. Luo, et al., “Disentangled federated learning for tackling attributes skew via

invariant aggregation and diversity transferring,” preprint arXiv:2206.06818, 2022.
[17] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized federated learning,”

IEEE Trans. on Neural Networks and Learning Systems, 2022.
[18] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated learning: A

meta-learning approach,” arXiv preprint arXiv:2002.07948, 2020.
[19] J. Zhang, S. Guo, et al., “Parameterized knowledge transfer for personalized

federated learning,” in Proc. of NeurIPS, 2021.
[20] Z. Wang, H. Xu, et al., “Resource-efficient federated learning with hierarchical

aggregation in edge computing,” in Proc. of IEEE INFOCOM, 2021.

[21] A. Wainakh, A. S. Guinea, T. Grube, and M. Mühlhäuser, “Enhancing privacy via

hierarchical federated learning,” in Proc. of IEEE EuroS&PW, 2020.

[22] H. Yang, “H-FL: A hierarchical communication-efficient and privacy-protected

architecture for federated learning,” arXiv preprint arXiv:2106.00275, 2021.
[23] X.Wei, J. Liu, X. Shi, and Y.Wang, “Participant selection for hierarchical federated

learning in edge clouds,” in Proc. of IEEE NAS, 2022.
[24] B. Luo, W. Xiao, et al., “Tackling system and statistical heterogeneity for federated

learning with adaptive client sampling,” in Proc. of IEEE INFOCOM, 2022.

[25] Z. Yang, et al., “Energy efficient federated learning over wireless communication

networks,” IEEE Trans. on Wireless Commu., vol.20, no.3, pp.1935–1949, 2020.
[26] J. Hamer, M. Mohri, and A. T. Suresh, “FedBoost: A communication-efficient

algorithm for federated learning,” in Proc. of ICML, 2020.
[27] H. Gao, A. Xu, and H. Huang, “On the convergence of communication-efficient

local sgd for federated learning,” in Proc. of AAAI, 2021, pp. 7510–7518.
[28] T. D. Nguyen, P. Rieger, et al., “Flame: Taming backdoors in federated learning,”

Cryptology ePrint Archive, 2021.
[29] H. Yang, M. Fang, and J. Liu, “Achieving linear speedup with partial worker

participation in non-IID federated learning,” Proc. of ICLR, 2021.
[30] L. Wang, Y. Guo, T. Lin, and X. Tang, “Client selection in nonconvex federated

learning: Improved convergence analysis for optimal unbiased sampling strategy,”

arXiv preprint arXiv:2205.13925, 2022.
[31] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of FedAvg

on non-IID data,” in Proc. of ICLR, 2019.
[32] M. Mahajan, P. Nimbhorkar, and K. Varadarajan, “The planar k-means problem

is NP-hard.,” Theoretical Computer Science, 442, 13-21, 2012.
[33] D. Aloise, A. Deshpande, et al., “NP-hardness of Euclidean sum-of-squares clus-

tering,” Machine learning, 75, 245-248, 2009.
[34] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary Speech Recog-

nition,” arXiv preprint arXiv:1804.03209, 2018.
[35] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny

images,” Technical Report, University of Toronto, 2009.

[36] T.-M. H. Hsu, et al., “Measuring the effects of non-identical data distribution for

federated visual classification,” arXiv preprint arXiv:1909.06335, 2019.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Non-IID in Federated Learning
	2.2 Hierarchical Federated Learning (HFL)
	2.3 Performance Measurement

	3 Group-based FEL (Group-FEL)
	3.1 System Model and Learning Procedures
	3.2 Cost Model

	4 Convergence Analysis
	4.1 Assumptions
	4.2 Main Convergence Result
	4.3 Key Observations

	5 Group Formation
	5.1 Grouping Criteria: CoV
	5.2 Group Formation Problem
	5.3 Grouping Algorithm: CoV Grouping
	5.4 Compared with Other Grouping Algorithms

	6 Group Sampling
	6.1 Sampling Criteria
	6.2 Handling the Unbiased Factor

	7 Performance Evaluations
	7.1 Experiments Setup
	7.2 Performance of Group-FEL
	7.3 Comparison with Existing Methods

	8 Conclusion
	References

